В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Asaboc453
Asaboc453
08.08.2022 13:11 •  Алгебра

Найдите, в какой точке графика функции [tex]y = \frac{x\sqrt{3}}{3} + x^{3}[tex] касательная наклонена к оси абсцисс под углом [tex]\alpha = \frac{\pi}{6} [tex]

Показать ответ
Ответ:
4578000872
4578000872
21.08.2020 13:25
Значение производной функции в точке равно угловому коэффициенту касательной к графику функции в этой точке. В свою очередь тангенс угла наклона прямой к оси ox равен угловому коэффициенту.
f'(x0)=k=tg(a)
находим производную данной функции:
y'=\frac{1}{\sqrt{3}}+3x^2
пусть x координата искомой точки будет b, тогда:
y'(b)=\frac{1}{\sqrt{3}}+3b^2
нам известен угол наклона, значит:
tg(\frac{\pi}{6})=\frac{1}{\sqrt{3}}=y'(b)=\frac{1}{\sqrt{3}}+3b^2
решим уравнение:
\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}}+3b^2 \\3b^2=0 \\b=0
найдем y- координату точки: y(0)=0
значит в точке (0;0) касательная составляет с графиком данной функции угол в \frac{\pi}{6}
ответ: (0;0)
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота