В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ыаррауцйу
ыаррауцйу
27.08.2020 22:51 •  Алгебра

Найдите все критические точки функции y=4cos x+cos2x-3?

Показать ответ
Ответ:
Nysha1111
Nysha1111
08.10.2020 14:41
Находим производную функции первого порядка.
  y'=(4\cos x+4\cos2x-3)'=(4\cos x)'+(4\cos 2x)'-(3)'=\\ \\ =-4\sin x-4\sin 2x\cdot (2x)'-0=-4\sin x-8\sin 2x
Приравниваем производную функции к нулю:

-4\sin x-8\sin2x=0\\ -4\sin x-16\sin x\cos x=0\\ -4\sin x(1+4\cos x)=0
Произведение равно нулю, если хотя бы один из множителей обращается в 0

\left[\begin{array}{ccc}\sin x=0\\ \\ \cos x=-0.25\end{array}\right~~~\Rightarrow~~~ \left[\begin{array}{ccc}x_1= \pi k,k \in \mathbb{Z}\\ \\ x=\pm\arccos(-0.25)+2 \pi n,n \in \mathbb{Z}\end{array}\right
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота