1) sinα=√2/2 Это табличное значение, положительное значит угол может лежать только в первой и второй четверти. α=π/4, 3π/4, 9π/4, 11π/4 По-простому правило такое для первой четверти периодичность 2π. a=π/4+2πk, k∈Z Для второй четверти периодичность также будет 2π a=3π/4+2πk, k∈Z Объединив 2 решения для 1 и 2 четверти получаем правило: a=(-1)ⁿπ/4+πk, k∈Z
2) cosa=-1/2 Это также табличное значение "-" говорит о том, что cos располагается во 2 и 3 четверти. a=2π/3, -2π/3, 4π/3, -4π/3 Значит значение косинуса подчиняется правилу: а=+-2π/3+2πk, k∈Z
3) tga=-√3/3 tg располагается во второй и четвертой четверти. А значит периодичность функции π. a=5π/6, 11π/6 Если учесть, что есть периодичность π. a=5π/6+πk, k∈Z
Это табличное значение, положительное значит угол может лежать только в первой и второй четверти.
α=π/4, 3π/4, 9π/4, 11π/4
По-простому правило такое для первой четверти периодичность 2π.
a=π/4+2πk, k∈Z
Для второй четверти периодичность также будет 2π
a=3π/4+2πk, k∈Z
Объединив 2 решения для 1 и 2 четверти получаем правило:
a=(-1)ⁿπ/4+πk, k∈Z
2) cosa=-1/2
Это также табличное значение "-" говорит о том, что cos располагается во 2 и 3 четверти.
a=2π/3, -2π/3, 4π/3, -4π/3
Значит значение косинуса подчиняется правилу:
а=+-2π/3+2πk, k∈Z
3) tga=-√3/3
tg располагается во второй и четвертой четверти.
А значит периодичность функции π.
a=5π/6, 11π/6
Если учесть, что есть периодичность π.
a=5π/6+πk, k∈Z
4) ctga=√3
Аналогично tg.
a=π/6, 7π/6
a=π/6+πk, k∈Z