Всё дело в том , что под знаком модуля может стоять и положительное число и отрицательное. |x| = x при х ≥ |x| = -x при х меньше 0 первый модуль = 0 при х = 3, второй =0 при х = -3 Вся числовая прямая этими точками разделится на промежутки: -∞ -3 3 +∞ На каждом промежутке функция будет выглядеть по - своему. а) (-∞; -3) у = -(х - 3) + х + 3 = -х +3 +х +3 = 6 у = 6 б) [-3;3] у = -(х -3) -(х +3) = -х +3 -х -3 = -2х у = -2х в) (3; +∞) у = х - 3-(х +3) = х - 3 - х - 3 = - 6 у = -6 теперь на координатной плоскости надо построить график этой кусочной функции. Теперь насчёт у = кх. Это прямая, проходящая через начало координат. Чтобы она имела с нашим графиком только одну точку пересечения, надо к выбирать любые, кроме к∈ (0; -2]
Сторона 1-го квадрата х Сторона 2-го квадрата у Длина нити или периметр 1-го квадрата: 4х Площадь 1-го квадрата : х² Периметр 2-го квадрата: 4у=4х-36 Площадь 2-го квадрата : у²=х²/2,25
|x| = -x при х меньше 0
первый модуль = 0 при х = 3, второй =0 при х = -3
Вся числовая прямая этими точками разделится на промежутки:
-∞ -3 3 +∞
На каждом промежутке функция будет выглядеть по - своему.
а) (-∞; -3)
у = -(х - 3) + х + 3 = -х +3 +х +3 = 6
у = 6
б) [-3;3]
у = -(х -3) -(х +3) = -х +3 -х -3 = -2х
у = -2х
в) (3; +∞)
у = х - 3-(х +3) = х - 3 - х - 3 = - 6
у = -6
теперь на координатной плоскости надо построить график этой кусочной функции.
Теперь насчёт у = кх. Это прямая, проходящая через начало координат. Чтобы она имела с нашим графиком только одну точку пересечения, надо к выбирать любые, кроме к∈ (0; -2]
Сторона 2-го квадрата у
Длина нити или периметр 1-го квадрата: 4х
Площадь 1-го квадрата : х²
Периметр 2-го квадрата: 4у=4х-36
Площадь 2-го квадрата : у²=х²/2,25
Имеем систему уравнений
4у=4х-36 4y=4x-36 4y=4x-36
y²=x²/2,25 2,25y²=x² x=+/-√2,25×y=+/-1,5y
т.к. по условию х и у - длины сторон, то х>0 b y>0, то х=-1,5y не подходящий корень.
Остается х=1,5у
4у=4*1,5у-36 4у=6y-36 2y=36 y=18
х=1,5у x=1,5y x=1,5y x=1,5*18=27
Отсюда первоначальная длина нити: 4х=4*27=108 см