Чтобы узнать четная или нечётная функция, надо поставить -х вместо х
так у нас имеется такая функция:
есои поставить -х вместо х квадратная функция проглотит минус и останется без изменений, но х поменяет свой знак на минус, и у нас получится такая функция:
эта функция никак не похожа на начальную, значит это точно не четная, а нечётная может быть только тогда, когда можно вывести минус из функции и получить начальную форму, видно что оно не подходит и на это
значит функция и не четная и не нечётная
А вторая задача решается точно так, и сразу можно получить что она нечётная
АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
Объяснение:
Чтобы узнать четная или нечётная функция, надо поставить -х вместо х
так у нас имеется такая функция:
есои поставить -х вместо х квадратная функция проглотит минус и останется без изменений, но х поменяет свой знак на минус, и у нас получится такая функция:
эта функция никак не похожа на начальную, значит это точно не четная, а нечётная может быть только тогда, когда можно вывести минус из функции и получить начальную форму, видно что оно не подходит и на это
значит функция и не четная и не нечётная
А вторая задача решается точно так, и сразу можно получить что она нечётная
Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются).
Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а.
Есть теорема:
Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую.
Что и требовалось для доказательства.