В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
zdjby1
zdjby1
27.02.2022 20:23 •  Алгебра

Найдите все значения , при каждом из которых уравнение имеет более одного корня.

Показать ответ
Ответ:
samwwww
samwwww
17.06.2020 05:41

Уравнение здесь имеет вид u3+u=v3+v, где u=2x2, v=3x+5a. От него можно перейти к равносильному равенству u=v по следующей причине. Функция f(u)=u3+u имеет производную f′(u)=3u2+1, которая всюду положительна. Поэтому f(u) строго монотонно возрастает на всей области определения. Поэтому её значения в различных точках не могут совпадать. Таким образом, мы приходим к равносильному условию u=v, а это квадратное уравнение 2x2−3x−5a=0. Находим дискриминант, и пишем, что он положителен: в этом и только в этом случае уравнение будет иметь более одного корня.

0,0(0 оценок)
Ответ:
ульяна540
ульяна540
17.06.2020 05:41

8x^6+2x^2 = (3x+5)^3+3x+5a

2x^2-3x+5a=0

D= 9+40a

D>0 (т.к. решений должно быть больше 1-го) => 9+40a>0

 

a> - 9/40

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота