Обозначим скорость катера по течению за х км/ч. Тогда скорость катера в стоячей воде равна (х-4) км/ч. По реке катер шел 15/x часов, по стоячей воде 4/(x-4) часов. Имеем уравнение: 15/x+4/(x-4)=1 15*(x-4)+4*x=x*(x-4) 15*x-60+4*x=x^2-4*x Имеем квадратное уравнение: x^2-23*x+60=0 Д=(-23)^-4*1*60=289 x1,2=23+-17 РАЗДЕЛИТЬ ВСЕ НА 2 x1=20 (км/час) x2=3 (км/час) - посторонний корень, скорость катера по течению не может быть меньше скорости течения. Проверка: 15/20+4/(20-4)=3/4+4/16=3/4+1/4=1 (час), что совпадает с условием задачи ответ: Скорость катера по течению равна 20 км/x
2.17 (3 твоя задача) решается по такому же алгоритму, как и 2.13 (1 задача). Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10) Тогда 10 х = 4,(4) Далее от 1-го выражения (пусть) отнимаем второе (тогда). 10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период) 9 х = 4 х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
Обозначим скорость катера по течению за х км/ч. Тогда скорость катера в стоячей воде равна (х-4) км/ч. По реке катер шел 15/x часов, по стоячей воде 4/(x-4) часов.
Имеем уравнение:
15/x+4/(x-4)=1
15*(x-4)+4*x=x*(x-4)
15*x-60+4*x=x^2-4*x
Имеем квадратное уравнение:
x^2-23*x+60=0 Д=(-23)^-4*1*60=289
x1,2=23+-17 РАЗДЕЛИТЬ ВСЕ НА 2
x1=20 (км/час)
x2=3 (км/час) - посторонний корень, скорость катера по течению не может быть меньше скорости течения.
Проверка:
15/20+4/(20-4)=3/4+4/16=3/4+1/4=1 (час), что совпадает с условием задачи
ответ: Скорость катера по течению равна 20 км/x
Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10)
Тогда 10 х = 4,(4)
Далее от 1-го выражения (пусть) отнимаем второе (тогда).
10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период)
9 х = 4
х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.