Пусть в квадратном уравнении значение a (возле x^2) = 1, тогда b (возле x) = -2 * (a - 1), а c = -2a + 1. Согласно теореме Виетта:
x(1) * x(2) = c/a
x(1) + x(2) = -b/a
Если один из корней уравнения положительный, а другой - отрицательный, то значение c/a отрицательное, так как при умножении положительных чисел на отрицательные произведение также отрицательное (меньше, чем 0). Тогда:
c/a < 0
(-2a+1)/1 < 0
-2a + 1 < 0
-2a < 0 - 1
-2a < -1
a > -1 : (-2)
a > 0,5
ответ: квадратное уравнение будет иметь положительный и отрицательный корни при a > 0,5
Объяснение:
1) 2х + 1 = 3х - 4
Перенесём известные слагаемые в одну сторону, неизвестные в другую:
2x-3x = -4-1
-x=-5
Делим обе части на множитель при переменной x (-1)
x=5
ответ: 5.
2) 1,6(5х – 1) = 1,8х – 4,7
Раскроем скобки:
8x-1,6=1,8х-4,7
Перенесём известные слагаемые в одну сторону, неизвестные в другую:
8х-1,8х=-4,7+1,6
6,2х=-3,1
Делим обе части на множитель при переменной x (6,2)
х=-0,5
ответ: -0,5.
3) - 2х + 1 = - х - 6
Перенесём известные слагаемые в одну сторону, неизвестные в другую:
-2х+х=-6-1
-х=-7
Делим обе части на множитель при переменной x (-1)
х=7
ответ: 7.
-
Пусть в квадратном уравнении значение a (возле x^2) = 1, тогда b (возле x) = -2 * (a - 1), а c = -2a + 1. Согласно теореме Виетта:
x(1) * x(2) = c/a
x(1) + x(2) = -b/a
Если один из корней уравнения положительный, а другой - отрицательный, то значение c/a отрицательное, так как при умножении положительных чисел на отрицательные произведение также отрицательное (меньше, чем 0). Тогда:
c/a < 0
(-2a+1)/1 < 0
-2a + 1 < 0
-2a < 0 - 1
-2a < -1
a > -1 : (-2)
a > 0,5
ответ: квадратное уравнение будет иметь положительный и отрицательный корни при a > 0,5
Подробнее - на -
Объяснение: