Для упрощения выражения были проведены следующие действия: 1) сократили дробь на три (для чего разделили числитель и знаменатель на три) 2) по свойству корней, корень из дроби равен корню из числителя и знаменателя 3) в числителе- корень квадратный (т.е. второй степени) из корня квадратного равен корню четвёртой степени (т.е. степени перемножаем 2*2=4). в знаменателе- корень из девяти равен ровно тройке 4) точный ответ уже получен, но если вам нужно найти приближённое значение выражения, то вычислим его на калькуляторе, и запишем, округлив до нужного знака после запятой.
Обратившись к основному тригонометрическому тождеству, получим:
2sin^2(x) - 5sin(x)cos(x) + 5cos^2(x) = sin^2(x) + cos^2(x);
sin^2(x) - 5sin(x)cos(x) + 4cos^(x) = 0.
Разделим полученное уравнение на cos^2(x):
tg^2(x) - 5tg(x) + 4 = 0.
Произведем замену переменных t = tg(t):
t^2 - 5t + 4 = 0.
Корни квадратного уравнения вида ax^2 + bx + c = 0 определяются
по формуле: x12 = (-b +- √(b^2 - 4 * a * c) / 2 * a.
t12 = (5 +- 3) / 2;
t1 = 1; t2 = 4.
tg(x) = 1;
x1 = π/4 +- π * n.
x2 = arctg(4) +- π * n.
Объяснение:
Для упрощения выражения были проведены следующие действия:
1) сократили дробь на три (для чего разделили числитель и знаменатель на три)
2) по свойству корней, корень из дроби равен корню из числителя и знаменателя
3) в числителе- корень квадратный (т.е. второй степени) из корня квадратного равен корню четвёртой степени (т.е. степени перемножаем 2*2=4). в знаменателе- корень из девяти равен ровно тройке
4) точный ответ уже получен, но если вам нужно найти приближённое значение выражения, то вычислим его на калькуляторе, и запишем, округлив до нужного знака после запятой.