Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:
Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:
Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:
Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3
х(-15х-1)=0
х₁=0 или -15х-1=0
-15х=1
х₂=-1/15
ОТВЕТ: 0 или -1/15
2.9x²-4x=0
х(9х-4)=0
х₁=0 или 9х-4=0
х₂=4/9
ОТВЕТ: 0 или 4/9
3.7x-2x² = 0
х(7-2х)=0
х₁=0 или 7-2х=0
х₂=3,5
ОТВЕТ: 0 или 3,5
4.3x²=10x
3х²-10х=0
х(3х-10)=0
х₁=0 или 3х-10=0
х₂=10/3
ОТВЕТ: 0 или 10/3
5.x²=0,7x
х²-0,7х=0
х(х-0,7)=0
х₁=0 или х-0,7=0
х₂=0,7
ОТВЕТ: 0 или 0,7
6.4x²-4x=22x
4х²-4х-22х=0
4х²-26х=0
2х(2х-13)=0
х₁=0 или 2х-13=0
х₂=13/2
ОТВЕТ: 0 или 13/2
7.4x²-x=x+x²-4x
4х²-х²-х+3х=0
3х²+2х=0
х(3х+2)=0
х₁=0 или 3х+2=0
х₂=-2/3
ОТВЕТ: 0 или -2/3
8. 8x²-4x+1=1-x
8х²-4х+1-1+х=0
8х²-3х=0
х(8х-3)=0
х₁=0 или 8х-3=0
х₂=3/8
ОТВЕТ: 0 или 3/8
9.2x²-5x=x(4x-1)
2x²-5x=4x²-х
4x²-2x²-х+5х=0
2х²+4х=0
2х(х+2)=0
х₁=0 или х+2=0
х₂=-2
ОТВЕТ: 0 или -2
10.x²-2(x-4)=4(5x+2)
х²-2х+8=20х+8
х²-2х+8-20х-8=0
х²-22х=0
х(х-22)=0
х₁=0 или х-22=0
х₂=22
ОТВЕТ: 0 или 22
Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3