Формула квадратичной функции — формула вида y=ax²+bх+c Пересечение графика с осью абсцисс (т.е. с горизонтальной) — это корни уравнения ax²+bx+c=0 Корни уравнения в данном случае — это 5 и (-1) По теореме Виета в уравнении ax²+bx+c=0: с=5*(-1)=-5, -b=5-1=4, т.е. b=-4 Экстремум квадратичной функции — это вершина параболы. Вершина параболы находится по формуле ув.=(4ac-b²)/(4a), где ув. — координата вершины по игрику. Нам известны yв., в и с. Cоставим уравнение. -9=(4*a*(-5)-16)/(4a) … a=1 ответ: y=x²-4x-5.
Пересечение графика с осью абсцисс (т.е. с горизонтальной) — это корни уравнения ax²+bx+c=0
Корни уравнения в данном случае — это 5 и (-1)
По теореме Виета в уравнении ax²+bx+c=0: с=5*(-1)=-5, -b=5-1=4, т.е. b=-4
Экстремум квадратичной функции — это вершина параболы. Вершина параболы находится по формуле ув.=(4ac-b²)/(4a), где ув. — координата вершины по игрику.
Нам известны yв., в и с. Cоставим уравнение.
-9=(4*a*(-5)-16)/(4a)
…
a=1
ответ: y=x²-4x-5.
67*((66+1)^2)^3=67*(66^2+2*66+1)^3=67(66*(66+2) +1)^3=
67*(66*68+1)^3=
67*((66*68)^3 + 3*(66*68)^2 +3 *(66*68) + 1)=
66*67*(66^2*68^3 + 3*66*68^2 +3*68) + 67=
3*22*67*(66^2*68^3 + 3*66*68^2 +3*68) + 67
A=A1+A2, A1=3*22*67*(66^2*68^3 + 3*66*68^2 +3*68) - кратно 3
A2=67
B=32^8=(33-1)^8=((33-1)^2)^4=(33^2-2*33+1)^4=(33(33-2)+1)^4=
(33*31+1)^4=((33*31+1)^2)^2=((33*31)^2+2*33*31+1)^2=
((33*31)(33*31+2)+1)^2=(33*31)^2*(33*31+2)^2+2*33*31*(33*31+2)+1=
3*11*31*(33*31+2)*(33*31*(33*31+2)+2)+1
B=B1+B2
B1=3*11*31*(33*31+2)*(33*31*(33*31+2)+2) - кратно 3
B2=1
C=67^7-32^8 = A-B=A1+A2-B1-B2=(A1-B1)+(A2-B2)
A1-B1=кратно 3, A2-B2=67-1=66=3*22 - кратно 3
т.о. исходное выражение кратно 3
можно решить менее громоздко, если сделать замену переменных
М=66*68, и N=33*31, которые кратны трем, но так нагляднее.