Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b
Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b
Воспользуемся основным тригонометрическим тождеством (sin²x + cos²x = 1)
2sin²x + 6sin²x + 6cos²x - 13sin2x = 0
Разложим синус удвоенного аргумента:
8sin²x - 26sinxcosx + 6cos²x = 0 |:2
4sin²x - 13sinxcosx + 3cos²x = 0 |:cos²x
4tg²x - 13tgx + 3 = 0
4tg²x - 12tgx - tgx + 3 = 0
4tgx(tgx - 3) - (tgx - 3) = 0
(4tgx - 1)(tgx - 3) = 0
4tgx = 1 или tgx = 3
tgx = 1/4 или tgx = 3
x = arctg(1/4) + πn, n ∈ Z или x = arctg3 + πk, k ∈ Z
ответ: arctg(1/4) + πn, n ∈ Z; arctg3 + πk, k ∈ Z .