Найдите значение переменной при которых алгебраическая дробь равна нулю( если такие значения существуют) 1.8 а) x-4/x+2 б) х^2 + 1/х^2 в) 2х + 6/х-2 г) х+1/х^2 + 1 1.9 а) 3х^2/х(х - 2) б) х^2 - 4/х - 2 в)х(х + 3)/( х + 3) г)х(х + 1)/х х^2 это икс в квадрате
Число дней, за которые вторая бригада выполнит всю работу ---х дней
Число дней, за которые первая бригада выполнит всю работу ---(х -8) дней
Производительность двух бригад ВМЕСТЕ ---1/3 ( это как бы скорость выполнения всей работы. Часть всей работы за ОДИН день)
Производительность второй бригады - 1/х ( сколько сделает за ОДИН день)
Производителность первой бригады -- 1 / (х-8) ( сколько сделает за ОДИН день)
Вместе за один день:
1/х + 1/(х -8) = 1/3
Это квадратное уравнение
х^2 - 14x + 24 = 0
Реши это уравнение. Получатся корни--- 2 дня и 12 дней.
Но 2 дня быть не может ---не может же одна бригада выполнить задание быстрее, чем две бригады вместе. Значит оставляем корень ---12 дней
ответ:
вторая бригада за 12 дней
первая бригада за 4 дня ( 12 - 8)
2) предположим ширина прямоугольника - x
длина будет (68 - 2x)/ 2
воспользуемся теоремой Пифагора
((68 - 2x)/2)^2 + x^2 = 26^2
(34 - x)^2 + x^2 = 676
1156 - 68x + x^2 + x^2 = 676
2x^2 - 68x + 480 = 0
x^2 - 34x + 240 = 0
D = 1156 - 960 = 196
x1 = (34 - 14)/2 = 10
x2 = (34+14)/2 = 24
(68 - 2 * 10)/2 = 48/2 = 24
(68 - 2 * 24)/ 2 = 20/2 = 10
ответ: 24, 10, 24, 10
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел равна 9. Их четыре.
Следовательно, искомая вероятность Р(А)= 4/36 = 1/9
2) При бросании двух игральных кубиков могут выпасть следующие варианты:
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел меньше семи.
Их пятнадцать.
Следовательно, искомая вероятность Р(В)=15/36=5/12