1.
Приравниваем обе части
х-1=-х+3
2х=3+1=4
х=2
Подставляем в 1-ре уравнение
у=2-1=1
ответ: (2,1)
2.
Выразим 4а из 1-ого уравнения
4а=2+6b
Подставляем во 2-ое
2+6b+2b=3
8b=1
b=1/8
Ищем а:
2а-3*(1/8)=1
2a=1+3/8=11/8
a=11/16
ответ (11/16,1/8)
4.
Пусть х - количество монет номиналом по 2 рубля, а у количество монет носиком по 5 рублей
Составляем систему:
х+у=18
2х+5у=97
Из 1-ого вырадаем х:
х=18-у
2(18-у)+5у=97
36-2у+5у=97
3у=97-36=61
у=61/3
х=18-61/3=-7/3
Объяснение:
Кажется в 4 номере неправильные цифры, т. к. получилось, что количество монет, дробное или отрицательное число
Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
- степень определяется выражением , то есть степень равна 6
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
Сумма степени и свободного члена многочлена :
ответ: 98
1.
Приравниваем обе части
х-1=-х+3
2х=3+1=4
х=2
Подставляем в 1-ре уравнение
у=2-1=1
ответ: (2,1)
2.
Выразим 4а из 1-ого уравнения
4а=2+6b
Подставляем во 2-ое
2+6b+2b=3
8b=1
b=1/8
Ищем а:
2а-3*(1/8)=1
2a=1+3/8=11/8
a=11/16
ответ (11/16,1/8)
4.
Пусть х - количество монет номиналом по 2 рубля, а у количество монет носиком по 5 рублей
Составляем систему:
х+у=18
2х+5у=97
Из 1-ого вырадаем х:
х=18-у
Подставляем во 2-ое
2(18-у)+5у=97
36-2у+5у=97
3у=97-36=61
у=61/3
х=18-61/3=-7/3
Объяснение:
Кажется в 4 номере неправильные цифры, т. к. получилось, что количество монет, дробное или отрицательное число
Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
Для многочлена :
- степень определяется выражением , то есть степень равна 6
- свободный член равен
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
- свободный член равен
Сумма степени и свободного члена многочлена :
ответ: 98