1) 45° и 315° (360°-45°) - углы между часовой и минутными стрелками в 19:30. Наименьший угол равен 45°. Пояснение решения: В то время, когда часы показывают 19:30, минутная стрелка показывает на цифру 6, а часовая находится ровно посередине между цифрами 7 и 8 циферблата. Циферблат (360°) разделен цифрами на 12 равных частей, поэтому 360°:12=30° - градусная мера дуги между двумя соседними цифрами циферблата 30°:2=15°- градусная мера половины дуги между двумя соседними цифрами циферблата 30°+15°=45°- искомый угол между стрелками в 19:30
б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2
Пояснение решения:
В то время, когда часы показывают 19:30, минутная стрелка показывает на цифру 6, а часовая находится ровно посередине между цифрами 7 и 8 циферблата. Циферблат (360°) разделен цифрами на 12 равных частей, поэтому
360°:12=30° - градусная мера дуги между двумя соседними цифрами
циферблата
30°:2=15°- градусная мера половины дуги между двумя соседними
цифрами циферблата
30°+15°=45°- искомый угол между стрелками в 19:30
2) (cos45°-1)(cos45°+1)=cos²45°-1=(√2/2)²-1=1/2 -1= -1/2