2) число -20 - отрицательное, оно больше числа 5,7. Так что будем отнимать от -20 5,7. -20 - 5,7 = - 14,3. ответ в этом примере получится отрицательный, так как -20 больше
4) Для того, чтобы поделить десятичные дроби, нужно перенести все запятые вправо так, чтобы мы делили на целое число. В данном случае, мы будем делить 187,5 на 75. 187 делить на 75 = 2 (целая часть). После целой части мы ставим запятую и делим 375 (остаток от деления) на 75. И получаем 5. ответ: 2,5
6) Складываем целые части дробей с целыми, а десятичные с десятичными. 54 + 5, А 7 + 63. Не забываем добавлять остатки от десятичных частей к целым. Получаем 60,33
8)Самое обыкновенное умножение. Можно решать столбиком. Каждое число друг под другом. Умножаем все числа друг на друга. Получаем 21,14
10) Переводим смешанную дробь 1 в неправильную. (1 * 14) + 5 = . Домножаем первую дробь на 2, чтобы получить общий знаменатель 14. Теперь решаем = . Умножаем на 12,6. Для удобства переведем 12,6 в неправильную дробь . Числитель умножаем на числитель, а знаменатель на знаменатель. Получим . Делим числитель на знаменатель и получаем 22,5
12) Переводим смешанные дроби в скобках в неправильные. Получим и . Приводим их к общему знаменателю, равному 90. Для этого домножаем первую дробь на 10, а вторую на 9. Получим и . Отнимаем дроби друг от друга. Для этого отнимаем числитель 320 - 198. Получаем 122. : . Чтобы поделить первую дробь на вторую, вторую дробь нужно перевернуть. Получим * 90. Сокращаем 90, получаем 122.
14) Чтобы не пришлось возводить оба больших числа в квадрат, вынесем степень за скобку . Получаем . 152 умножаем на 152, получаем 23104. 23104 делим на 100, то есть переносим запятую на 2 числа (число нолей в 100) влево. Получаем 231,04
16) Переведем смешанную дробь 6 в неправильную = . Делим дроби друг на друга. Для этого перевернем вторую дробь. * .
Сокращаем 13. 82 делим на 2. Получаем 41.
18) Сократим 24,2 и 0,242. Поделим числа друг на друга. Получим 100.
Сократим 35,6 и 3,56. Получим 10. 10 * 100 = 1000
20) Умножим на каждое число в скобках. Получим . . Вынесем числа из под корня. Получаем 10 + 5 = 15
22) Возводим в квадрат. = 16 = 7. 16 * 7 = 112. 112 делим на 16, получаем 7
Можно и без применения производной : f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 , равенство имеет место ,если 16 - x =x-14, т.е. при x=15. Затем из f²(x) ≤ 4 ⇒ f(x) ≤ 2 . || f(x) >0 ||
2-ой Это не мое решение ( более искусственный, использован частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * * ОДЗ :x∈[14;16] Оценим обе части равенства √(16-x ) =√(16-x )*1 ≤ (17-x)/2 (3) ; равенство, если 16 -x=1 ⇒x=15. √(x-14)= √(x-14)*1 ≤ (x-13)/2 (4) ; равенство, если x-14=1 ⇒x=15. Из (3) и (4) получаем √(16-x)+√(x-14) ≤ 2 * * * (17-x)/2 +(x-14)/2 =2 * * *
правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2 равенство опять , если x=15. 2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2 равенство имеет место только при x=15.
2) - 14,3
4) 2,5
6) 60,33
8) 21,14
10) 22,5
12) 122
14) 231,04
16) 41
18) 1000
20) 15
22) 7
Объяснение:
2) число -20 - отрицательное, оно больше числа 5,7. Так что будем отнимать от -20 5,7. -20 - 5,7 = - 14,3. ответ в этом примере получится отрицательный, так как -20 больше
4) Для того, чтобы поделить десятичные дроби, нужно перенести все запятые вправо так, чтобы мы делили на целое число. В данном случае, мы будем делить 187,5 на 75. 187 делить на 75 = 2 (целая часть). После целой части мы ставим запятую и делим 375 (остаток от деления) на 75. И получаем 5. ответ: 2,5
6) Складываем целые части дробей с целыми, а десятичные с десятичными. 54 + 5, А 7 + 63. Не забываем добавлять остатки от десятичных частей к целым. Получаем 60,33
8)Самое обыкновенное умножение. Можно решать столбиком. Каждое число друг под другом. Умножаем все числа друг на друга. Получаем 21,14
10) Переводим смешанную дробь 1 в неправильную. (1 * 14) + 5 = . Домножаем первую дробь на 2, чтобы получить общий знаменатель 14. Теперь решаем = . Умножаем на 12,6. Для удобства переведем 12,6 в неправильную дробь . Числитель умножаем на числитель, а знаменатель на знаменатель. Получим . Делим числитель на знаменатель и получаем 22,5
12) Переводим смешанные дроби в скобках в неправильные. Получим и . Приводим их к общему знаменателю, равному 90. Для этого домножаем первую дробь на 10, а вторую на 9. Получим и . Отнимаем дроби друг от друга. Для этого отнимаем числитель 320 - 198. Получаем 122. : . Чтобы поделить первую дробь на вторую, вторую дробь нужно перевернуть. Получим * 90. Сокращаем 90, получаем 122.
14) Чтобы не пришлось возводить оба больших числа в квадрат, вынесем степень за скобку . Получаем . 152 умножаем на 152, получаем 23104. 23104 делим на 100, то есть переносим запятую на 2 числа (число нолей в 100) влево. Получаем 231,04
16) Переведем смешанную дробь 6 в неправильную = . Делим дроби друг на друга. Для этого перевернем вторую дробь. * .
Сокращаем 13. 82 делим на 2. Получаем 41.
18) Сократим 24,2 и 0,242. Поделим числа друг на друга. Получим 100.
Сократим 35,6 и 3,56. Получим 10. 10 * 100 = 1000
20) Умножим на каждое число в скобках. Получим . . Вынесем числа из под корня. Получаем 10 + 5 = 15
22) Возводим в квадрат. = 16 = 7. 16 * 7 = 112. 112 делим на 16, получаем 7
Решите уравнение √(16 - x ) +√(x-14) =x²-30x +227 ответ: x=15 .
обозначаем f(x) = √(16 - x ) +√(x-14)
D(f) : { 16 -x ≥0 ; x -14 ≤0 .⇔x∈[14;16] * * * ООФ * * *
Очевидно f(x) > 0, т.к. 16 - x и x -14 нулевое значение принимают при разных значениях переменного x . * * * система 16 - x =0=x -14 не имеет решения * * *
f '(x) =( √(16 - x ) +√(x-14) ) ' = -1/2√(16 - x) +1/2√(x-14) =
1/2( √(16-x) - √(x -14) ) /2√(16 - x) *√(x-14)
f '(x) =0 ⇒√(16-x) - √(x-14)=0 ⇒x=15.
f ' (x) + -
14 15 16
f(x) ↑ max ↓
maxf(x) = f(15) =2 . (1)
x∈[14;16]
g(x) =x²-30x +227 =(x-15)² +2 ≥2
min g(x) = g(15) =2 . (2)
Из (1) и (2) следует x=15 .
Можно и без применения производной :
f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 ,
равенство имеет место ,если 16 - x =x-14, т.е. при x=15.
Затем из f²(x) ≤ 4 ⇒ f(x) ≤ 2 . || f(x) >0 ||
2-ой Это не мое решение
( более искусственный, использован частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * *
ОДЗ :x∈[14;16]
Оценим обе части равенства
√(16-x ) =√(16-x )*1 ≤ (17-x)/2 (3) ; равенство, если 16 -x=1 ⇒x=15.
√(x-14)= √(x-14)*1 ≤ (x-13)/2 (4) ; равенство, если x-14=1 ⇒x=15.
Из (3) и (4) получаем √(16-x)+√(x-14) ≤ 2 * * * (17-x)/2 +(x-14)/2 =2 * * *
правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2
равенство опять , если x=15.
2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2
равенство имеет место только при x=15.