Рассмотрим функции и . Область определения функции есть промежуток , т.к. выражение имеет смысл только при неотрицательных значениях. Область значений функции является промежуток . Точки построения графика: (0;0), (1;1), (4;2), (9;3). Графиком функции является парабола, ветви направлены вверх (т.к. коэффициент при x² : а=1>0). (2;0) - координаты вершины параболы.
На рисунку видим, что графики функций пересекаются в двух точках, это означает, что исходное уравнение имеет 2 корня.
Рассмотрим функции и . Область определения функции есть промежуток , т.к. выражение имеет смысл только при неотрицательных значениях. Область значений функции является промежуток . Точки построения графика: (0;0), (1;1), (4;2), (9;3). Графиком функции является парабола, ветви направлены вверх (т.к. коэффициент при x² : а=1>0). (2;0) - координаты вершины параболы.
На рисунку видим, что графики функций пересекаются в двух точках, это означает, что исходное уравнение имеет 2 корня.
Графиком функции является парабола, ветви направлены вверх (т.к. коэффициент при x² : а=1>0). (2;0) - координаты вершины параболы.
На рисунку видим, что графики функций пересекаются в двух точках, это означает, что исходное уравнение имеет 2 корня.
ответ: 2 корня.
Графиком функции является парабола, ветви направлены вверх (т.к. коэффициент при x² : а=1>0). (2;0) - координаты вершины параболы.
На рисунку видим, что графики функций пересекаются в двух точках, это означает, что исходное уравнение имеет 2 корня.
ответ: 2 корня.