∠СDA = 90°, т.к. Вписанный угол, опирающийся на диаметр, является прямым углом. Следовательно,
ΔСDA - прямоугольный. Сумма всех углов = 180°. Значит,
∠DAC = 180° - 90° - 54° = 36°
∠ВАD = ∠DAC +∠САВ, откуда
∠САВ = ∠ВАD - ∠DAC = 78°-36° =42°
∠САВ = 42°
№ 90
1) Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами, т.е.
Объяснение:
№89
∠СDA = 90°, т.к. Вписанный угол, опирающийся на диаметр, является прямым углом. Следовательно,
ΔСDA - прямоугольный. Сумма всех углов = 180°. Значит,
∠DAC = 180° - 90° - 54° = 36°
∠ВАD = ∠DAC +∠САВ, откуда
∠САВ = ∠ВАD - ∠DAC = 78°-36° =42°
∠САВ = 42°
№ 90
1) Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами, т.е.
∠α = ½ ∪АВ, откуда
∪АВ = 2∠∝
α = 40° → β = 80° (1а ) → α + β =120° (1с )
α = 70° → β = 140° (2с) α + β =210°
α = 80° → β = 160° (3d) α + β = 240° (3b)
ответ: 1а, 1 с
2с
3d, 3b
ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8