В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dasssshka1
dasssshka1
19.02.2023 16:22 •  Алгебра

Найдите значение выражения 3+tg15°-tg60°/1+tg15°*tg60° люди добрые надо​

Показать ответ
Ответ:
sweta2012
sweta2012
04.05.2023 04:16
Рассмотрим функцию
    f(x,y,z)=x^2+y^2-xz-yz
Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
\dfrac{\partial z}{\partial x} = -\dfrac{ \frac{\partial f}{\partial x} }{ \frac{\partial f}{\partial z} } =- \dfrac{2x-z}{-x-y}

\dfrac{\partial z}{\partial y} = -\dfrac{ \frac{\partial f}{\partial y} }{ \frac{\partial f}{\partial z} } =- \dfrac{2y-z}{-x-y}
Вычислим значение частных производных в точке M_0 с координатами (x_0;y_0;z_0).
f'_x(x_0;y_0;z_0)= \dfrac{2x_0-z_0}{x_0+y_0} \\ \\ f'_y(x_0;y_0;z_0)= \dfrac{2y_0-z_0}{x_0+y_0}
Запишем уравнение касательной плоскости к поверхности в точке M_0:
z-z_0=f'_x(x_0;y_0;z_0)(x-x_0)+f'_y(x_0;y_0;z_0)(y-y_0) - уравнение касательной в общем виде.

\boxed{z-z_0= \dfrac{2x_0-z_0}{x_0+y_0} \cdot (x-x_0)+ \dfrac{2y_0-z_0}{x_0+y_0} \cdot(y-y_0)} - уравнение касательной плоскости к поверхности в точке M_0 с координатами (x_0;y_0;z_0).

Уравнение нормали в общем виде:
      \dfrac{x-x_0}{f'_x(x_0;y_0;z_0)} = \dfrac{y-y_0}{f'_y(x_0;y_0;z_0)} = \dfrac{z-z_0}{-1}
Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке M_0:

\boxed{\dfrac{(x-x_0)(x_0+y_0)}{2x_0-z_0} = \dfrac{(y-y_0)(x_0+y_0)}{2y_0-z_0} = \dfrac{z-z_0}{-1}} - каноническое уравнение нормали к поверхности в точке M_0 с координатами (x_0;y_0;z_0).
0,0(0 оценок)
Ответ:
cherdancev05Gleb
cherdancev05Gleb
04.05.2023 04:16
Рассмотрим функцию
    f(x,y,z)=x^2+y^2-xz-yz
Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
\dfrac{\partial z}{\partial x} = -\dfrac{ \frac{\partial f}{\partial x} }{ \frac{\partial f}{\partial z} } =- \dfrac{2x-z}{-x-y}

\dfrac{\partial z}{\partial y} = -\dfrac{ \frac{\partial f}{\partial y} }{ \frac{\partial f}{\partial z} } =- \dfrac{2y-z}{-x-y}
Вычислим значение частных производных в точке M_0 с координатами (x_0;y_0;z_0).
f'_x(x_0;y_0;z_0)= \dfrac{2x_0-z_0}{x_0+y_0} \\ \\ f'_y(x_0;y_0;z_0)= \dfrac{2y_0-z_0}{x_0+y_0}
Запишем уравнение касательной плоскости к поверхности в точке M_0:
z-z_0=f'_x(x_0;y_0;z_0)(x-x_0)+f'_y(x_0;y_0;z_0)(y-y_0) - уравнение касательной в общем виде.

\boxed{z-z_0= \dfrac{2x_0-z_0}{x_0+y_0} \cdot (x-x_0)+ \dfrac{2y_0-z_0}{x_0+y_0} \cdot(y-y_0)} - уравнение касательной плоскости к поверхности в точке M_0 с координатами (x_0;y_0;z_0).

Уравнение нормали в общем виде:
      \dfrac{x-x_0}{f'_x(x_0;y_0;z_0)} = \dfrac{y-y_0}{f'_y(x_0;y_0;z_0)} = \dfrac{z-z_0}{-1}
Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке M_0:

\boxed{\dfrac{(x-x_0)(x_0+y_0)}{2x_0-z_0} = \dfrac{(y-y_0)(x_0+y_0)}{2y_0-z_0} = \dfrac{z-z_0}{-1}} - каноническое уравнение нормали к поверхности в точке M_0 с координатами (x_0;y_0;z_0).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота