Өмірде шынайы, өзіне серік болатын дос табу қиын. Достар бір- біріне қиын кезде де, қуаныш кезінде де бірге болып көмектесу керек. Егер достар бір- бірінің сырын сақтай алмаса, ол шынайы достыққа жатпайды. Менің достарым көп. Мен олардың бәрінде жақсы көремін.Солардың ішінде екі досымды ерекше жақсы көремін. Олар Диана мен Гүлсәт.
Оларға қиын кездерде қолымнан келгенше көмектескім келеді. Біз кейде ренжісіп қаламыз. Дос болғасын ондай жағдайлар болады ғой …. .
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Өмірде шынайы, өзіне серік болатын дос табу қиын. Достар бір- біріне қиын кезде де, қуаныш кезінде де бірге болып көмектесу керек. Егер достар бір- бірінің сырын сақтай алмаса, ол шынайы достыққа жатпайды. Менің достарым көп. Мен олардың бәрінде жақсы көремін.Солардың ішінде екі досымды ерекше жақсы көремін. Олар Диана мен Гүлсәт.
Оларға қиын кездерде қолымнан келгенше көмектескім келеді. Біз кейде ренжісіп қаламыз. Дос болғасын ондай жағдайлар болады ғой …. .
Бірақ бір -бірімізбен тез татуласып кетеміз!
1 0
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: