Т.к треугольник равнобедренный, то высота проведенная к основанию является медианой, а медиана делит сторону на 2 равных части, следовательно делит основание на отрезки равные 3 см. Высота проведенная к основанию образует с основание угол равный 90 градусам. У нас получается прямоугольный треугольник к с гипотенузой 5 см и катетом 3 см. Нам надо найти еще один катет, обозначим его за х. 5^2=x^2+3^2; x^2=5^2-3^2; x^2=16; х=4,-4, т.к катет не может быть отрицательным, то -4 нам не подходит, поэтому остается 4 см ОТВЕТ: ВЫСОТА РАВНА 4 СМ
Пусть х - скорость легкового автомобиля, тогда скорость грузового - (х-20). Врямя в пути определяется как отношение пройденного пути к скорости. Тогда Время в пути для легкового автомобиля - 30/х, для грузового - 30/(х-20). 15 минут=15/60 часа=1/4 часа. Составим уравнение
(30/х)+(1/4)=30/(х-20)
(30/х)-(30/(х-20))=-1/4
Приведем к общему знаменателю
(30(х-20)-30х)/(х(х-20))=-1/4
-600/(х^2-20x)=-1/4
х^2-20x=-600/(-1/4)
х^2-20x=2400
х^2-20x-2400=0
D=400+4*2400=10000
x1 =(20-100)/2=-40 - не удовлетворяет условию
х2=(20+100)/2=60 (км/ч) - скорость легкового автомобиля.
Тогда 60-20=40 (км/ч) - скорость грузового автомобиля
ОТВЕТ: ВЫСОТА РАВНА 4 СМ
Пусть х - скорость легкового автомобиля, тогда скорость грузового - (х-20). Врямя в пути определяется как отношение пройденного пути к скорости. Тогда Время в пути для легкового автомобиля - 30/х, для грузового - 30/(х-20). 15 минут=15/60 часа=1/4 часа. Составим уравнение
(30/х)+(1/4)=30/(х-20)
(30/х)-(30/(х-20))=-1/4
Приведем к общему знаменателю
(30(х-20)-30х)/(х(х-20))=-1/4
-600/(х^2-20x)=-1/4
х^2-20x=-600/(-1/4)
х^2-20x=2400
х^2-20x-2400=0
D=400+4*2400=10000
x1 =(20-100)/2=-40 - не удовлетворяет условию
х2=(20+100)/2=60 (км/ч) - скорость легкового автомобиля.
Тогда 60-20=40 (км/ч) - скорость грузового автомобиля