1) 2x - 3y = 6
Точки пересечения с осью Ох: принимаем у=0
2x - 3*0 = 6
2x = 6
x = 3
(3;0) - точка пересечения с осью Ох
Точки пересечения с осью Оу: принимаем х=0
2*0 - 3у = 6
-3у = 6
у = -2
(0;-2) - точка пересечения с осью Оу.
2) x² + y = 4
x² + 0 = 4
x² = 4
x = ± 2
(-2;0), (2;0) - точки пересечения с осью абсцисс.
0² + у = 4
у = 4
(0;4) - точка пересечения с осью ординат.
3) |x| + |y| = 7
Точки пересечения с осью Ох: принимаем у = 0.
|x| + |0| = 7
|x| = 7
x = ± 7
(-7;0), (7;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х = 0.
|0| + |y| = 7
|y| = 7
y = ± 7
(0;-7), (0;7) - точки пересечения с осью ординат.
Объяснение:
Нули функции (-5; 0) (-1; 0) (4; 0) (10; 0)
У>0 при х∈(-5, -1) и при х∈(4, 10)
а)Нули функции это точки пересечения графиком оси Ох, где у ВСЕГДА равен нулю.
Таких точек здесь 4, координаты: (-5; 0) (-1; 0) (4; 0) (10; 0)
б)Если заменить слово "аргумент" на х, а "функция" на у, то понятно, что нужно определить, при каких значениях х у>0.
На графике ясно видны эти отрезки, где функция выше оси Ох.
Таких отрезков 2: от -5 до -1 и от 4 до 10.
1) 2x - 3y = 6
Точки пересечения с осью Ох: принимаем у=0
2x - 3*0 = 6
2x = 6
x = 3
(3;0) - точка пересечения с осью Ох
Точки пересечения с осью Оу: принимаем х=0
2*0 - 3у = 6
-3у = 6
у = -2
(0;-2) - точка пересечения с осью Оу.
2) x² + y = 4
Точки пересечения с осью Ох: принимаем у=0
x² + 0 = 4
x² = 4
x = ± 2
(-2;0), (2;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х=0
0² + у = 4
у = 4
(0;4) - точка пересечения с осью ординат.
3) |x| + |y| = 7
Точки пересечения с осью Ох: принимаем у = 0.
|x| + |0| = 7
|x| = 7
x = ± 7
(-7;0), (7;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х = 0.
|0| + |y| = 7
|y| = 7
y = ± 7
(0;-7), (0;7) - точки пересечения с осью ординат.
Объяснение:
Нули функции (-5; 0) (-1; 0) (4; 0) (10; 0)
У>0 при х∈(-5, -1) и при х∈(4, 10)
Объяснение:
а)Нули функции это точки пересечения графиком оси Ох, где у ВСЕГДА равен нулю.
Таких точек здесь 4, координаты: (-5; 0) (-1; 0) (4; 0) (10; 0)
б)Если заменить слово "аргумент" на х, а "функция" на у, то понятно, что нужно определить, при каких значениях х у>0.
На графике ясно видны эти отрезки, где функция выше оси Ох.
Таких отрезков 2: от -5 до -1 и от 4 до 10.
У>0 при х∈(-5, -1) и при х∈(4, 10)