Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
Числовое множество (- 14; 4) содержится в данном интервале.
Числовое множество (- 12; 5) содержится в данном интервале.
Пошаговое объяснение:
Дан интервал (-14; 6).
Если ниже представлены варианты возможных ответов:
1.(6; 10)
2.(14; 4)
3.(12; 5),
то они, видимо, записаны с ошибками.
Думаю, что ответ должен быть таким:
А вот (6; 10) не содержится в данном интервале. Докажем это:
например, число 9∈(6; 10), но 9∉ (-14; 6).
Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
Числовое множество (- 14; 4) содержится в данном интервале.
Числовое множество (- 12; 5) содержится в данном интервале.
Пошаговое объяснение:
Дан интервал (-14; 6).
Если ниже представлены варианты возможных ответов:
1.(6; 10)
2.(14; 4)
3.(12; 5),
то они, видимо, записаны с ошибками.
Думаю, что ответ должен быть таким:
Числовое множество (- 14; 4) содержится в данном интервале.
Числовое множество (- 12; 5) содержится в данном интервале.
А вот (6; 10) не содержится в данном интервале. Докажем это:
например, число 9∈(6; 10), но 9∉ (-14; 6).