В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
CCQ
CCQ
09.11.2020 17:30 •  Алгебра

Найдите значение выражения 9 класс
1) sin sin 56° cos cos 34° + cos cos 56°sin sin
2)cos cos 111° cos cos 69° - sin sin 101° sin
3) cos cos 101° cos cos 79° - sin sin 101° sin
4)sin sin 126° cos cos 36° - cos cos 126° sin​

Показать ответ
Ответ:
NastyaANIME
NastyaANIME
03.04.2022 04:39

y=\frac{x}{\ln{x}}

1. Область определения: На ноль делить нельзя --> \ln{x\neq }0=x\neq 1 и х не отрицательный т.к. х под натуральным логарифмом. Итоге: x∈[0;1)∪(1;+∞)

2. Функция общего вида т.к. f(-x)≠±f(x)

3. Точки пересечения с осями:

\frac{x}{\ln{x}}=0 \\\left \{ {{x=0} \atop {\ln{x}\neq 0=x\neq }1} \right. \\(0;0)\\\frac{0}{\ln{0}} =0 Только одна точка (0;0)

4. Исследование с 1ой производной:

y'=\frac{1*\ln{x}-x*\frac{1}{x} }{\ln^2{x}} =\frac{\ln{x}-1}{\ln^2{x}}

см. внизу.

y(e)=\frac{e}{\ln{e}} =e

5. Исследование со 2ой производной:

y'=\frac{\ln{x}-1}{\ln^2{x}}\\y''=\frac{\frac{\ln^2{x}}{x} -2\ln{x}*\frac{1}{x}*(\ln{x}-1)}{\ln^4{x}} =\\\frac{\ln{x}-2\ln{x}+2}{x*\ln^3{x}}=\\\frac{-(\ln{x}-2)}{x\ln^3{x}}

см. внизу.

y(e^2)=\frac{e^2}{\ln{e^2}}= \frac{e^2}{2}

6. Асимптоты:

Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты: \lim_{x\to\infty}{(kx+b-f(x))}

Находим коэффициент k: k=\lim_{x\to\infty}{\frac{f(x)}{x}}\\k=\lim_{x\to\infty}{\frac{\frac{x}{ln(x)}}{x}}=\lim_{x\to\infty}{\frac{1}{ln(x)}}=0

Находим коэффициент b: b=\lim_{x\to\infty}{f(x)-k*x}\\b=\lim_{x\to\infty}{\frac{x}{ln(x)}-0*x}=\lim_{x\to\infty}{\frac{x}{ln(x)}}=\infty

Предел равен ∞, следовательно, наклонные асимптоты функции отсутствуют.

Найдем вертикальные асимптоты. Для этого определим точки разрыва: x=1

Находим переделы в точке 1: \lim_{x\to1-0}{\frac{x}{ln(x)}}=-\infty\\\lim_{x\to1+0}{\frac{x}{ln(x)}}=\infty

Значит точка разрыва II рода и является вертикальной асимптотой.


Решите номер 5 .есть вложение. 25 б . с исследованием .
0,0(0 оценок)
Ответ:
shabralievaaimp03wgf
shabralievaaimp03wgf
03.04.2022 04:39

y=(-2)^5*\sqrt{|x^2-3|^4}

Т.к. модуль возводиться в чётную степень, от него можно избиваться.

y=(-2)^5*\sqrt{(x^2-3)^4}\\y=(-2)^5*(x^2-3)^2

1. Область определения все числа.

2. От х берётся чётная степень, поэтому функция чётная (со словами просто совпадение), то есть y(x)=y(-x), таким образом можно построить график функции справа и отразить его на лево.

3. Найдём точки пересечения с осями:

y(0)=(-2)^5*(0^2-3)^2=-32*9=-288\\0=(-2)^5*(x^2-3)^2=x^2-3=0=x=б\sqrt{3}

4. Исследование с первой производной (экстремумы и возрастания и убывание функции).

y'=-2(x^2-3)(2x)=-4x(x+\sqrt{3} )(x-\sqrt{3} )

Cм. внизу

5. Исследование с второй производной (точки перегиба, выпуклости и вогнутости).

y'=-4x^3+12x\\y''=-12x^2+12=-12(x-1)(x+1)

См. внизу

6. Исследование на асимптоты:

\lim_{x \to \infty }{(kx+b-f(x))}

Формула чтобы найти уравнение асимптоты. Найдём k.

\lim_{x\to\infty }{\frac{f(x)}{x}}\\\lim_{x \to\infty }{\frac{(-2)^{5}(x^{2}-3)^{2}}{x}}=\\\lim_{x\to\infty }{\frac{-32*x^{4}+192*x^{2}-288}{x}} = -\infty

Т.к. коэффициент равен -∞, то асимптот не существует.


Решите номер 5 .есть вложение. 25 б . с исследованием .
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота