В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
innagavr
innagavr
08.06.2022 18:40 •  Алгебра

Найдите значение выражения a^-11a^3/a^-6 при по алгебре

Показать ответ
Ответ:
vadimmikrukov6p07zb1
vadimmikrukov6p07zb1
12.02.2023 03:53

Пусть C — первая деталь окажется стандартной. Гипотезы:

H₁ - деталь изготовлена первым заводом;

H₂ - деталь изготовлена вторым заводом;

P(C|H_1)=0.8;\\ P(C|H_2)=0.6\\ P(H_1)=\dfrac{70}{120}=\dfrac{7}{12}\\ P(H_2)=\dfrac{50}{120}=\dfrac{5}{12}

Вероятность события А по формуле полной вероятности

P(C)=P(C|H_1)P(H_1)+P(C|H_2)P(H_2)=\dfrac{7}{12}\cdot0.8+\dfrac{5}{12}\cdot 0.6=\dfrac{43}{60}

По формуле Байеса, вероятность того, что эта деталь изготовлена первым заводом, равна:

P(H_1|C)=\dfrac{P(C|H_1)P(H_1)}{P(C)}=\dfrac{0.8\cdot\dfrac{7}{12}}{\dfrac{43}{60}}=\dfrac{28}{43}

Аналогично, пусть В — вторая деталь окажется стандартной. Так как одна деталь уже вынута, то в партии остается 119 лампочек, из них 69 изготовлены на первом заводе.

P(B|H_1)=0.8;\\ P(B|H_2)=0.6;\\ P(H_1)=\dfrac{69}{119}\\ \\ P(H_2)=\dfrac{50}{119}

По формуле полной вероятности, вероятность события В:

P(B)=P(B|H_1)P(H_1)+P(B|H_2)P(H_2)=0.8\cdot\dfrac{69}{119}+0.6\cdot\dfrac{50}{119}=\dfrac{426}{595}

По формуле Байеса, вероятность того, что эта деталь изготовлена первым заводом, равна:

P(H_1|B)=\dfrac{P(B|H_1)P(H_1)}{P(B)}=\dfrac{0.8\cdot\dfrac{69}{119}}{\dfrac{426}{595}}=\dfrac{46}{71}

По теореме умножения, вероятность того, что наудачу взятые две лампочки являются стандартными, равна

P(A)=P(C)\cdot P(B)=\dfrac{43}{60}\cdot\dfrac{426}{595}=\dfrac{3053}{5950}\approx0.513

По теореме умножения, вероятность того, что обе лампочки изготовлены на первом заводе, при условии что событие А произошло, равна:

P=P(H_1|C)\cdot P(H_1|B)=\dfrac{28}{43}\cdot\dfrac{46}{71}=\dfrac{1288}{3053}\approx0.42

0,0(0 оценок)
Ответ:
noname955
noname955
02.06.2022 00:14

При делении целых чисел на 11 мы получаем остатки от 0 до 10. Рассмотрим какие остатки могут давать целые числа в пятой степени при делении на 11. Для этого достаточно возвести числа от 0 до 10 в пятую степень и рассмотреть остатки от их деления на 11. В итоге получим, что при делении целых чисел в пятой степени на 11 получаются остатки 0, 1 и 10. В левой части уравнения стоит сумма трех целых чисел в пятой степени. Следовательно, она может давать остатки 0, 1, 2, 3, 8, 9 и 10. Но 2009 при делении на 11 дает остаток 7. Следовательно уравнение не имеет решений в целых числах.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота