Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.
е адрес электронной почты и получите 10 .
школьные знания.com
какой у тебя вопрос?
5+3 б
сократите дробь (подробно расписывая):
1) (x^2-y^2): (x+y)^2
2) (x-y)^2: (x^2-y^2)
3) (x^2-9): (x^2+6x+9)
4) (x^2-10x+25): (x^2-25)
попроси больше объяснений следитьотметить нарушение dautovaamelia 20 часов назад
ответы и объяснения
lesben главный мозг
1)(x²-y²): (x+y)²=(x+y)(x-y): (x+y)(x+y)=(x-y): (x+y) , x+y≠0
2)(x-y)²: (x²-y²)=(x-y)(x-y): (x+y)(x-y)=(x-y): (x+y) , x+y≠0
3)(x²-9): (x²+6x+9)=(x²-3²): (x+3)²=(x+3)(x-3): (x+3)(x+3)=(x-3): (x+3), x≠-3
4)(x²-10x+25): (x²-25)=(x-5)²: (x+5)(x-5)=
=(x-5): (x+5) , x≠5,x≠-5
(a²-b²=(a+b)(a-b) , a²+2ab+b²=(a+b)²)