1) При p=0, получим неравенство -3х+3>0, откуда x<1, т.е. оно верно не при всех х, значит p=0 не подходит. 2) При p<0 левая часть задает параболу, ветви которой направлены вниз, поэтому она не лежит целиком в верхней полуплоскости, значит такие p нам не подходят. 3) При p>0 левая часть задает параболу, ветви которой направлены вверх, поэтому неравенство будет выполняться при любом х в случае, когда эта парабола не пересекает ось Ох, т.е. левая часть не имеет корней или, что то же самое,. ее дискриминант отрицателен: D=(2p-3)²-4p(p+3)=4p²-12p+9-4p²-12p=-24p+9<0, откуда p>9/24=3/8. ответ: p∈(3/8;+∞).
1. Подкоренная дробь больше или равна 0, при этом в области определения дроби х≠ 2, а также х=±4 - нули этой дробной функции. Методом интервалов в области определения дробной функции получаем четыре промежутка, из них на двух дробь больше или равна 0: (-∞;-4] и (2;4]. Это область определения данной функции. 2. x≠3. область определения данной функции (-∞;3)(3;∞) 4. x≠±1/3. область определения данной функции (-∞;-1/3)(-1/3;1/3)(1/3;∞) 5. Подкоренное выражение больше или равна 0, область определения данной функции (-∞;-4] [4;∞).
2) При p<0 левая часть задает параболу, ветви которой направлены вниз, поэтому она не лежит целиком в верхней полуплоскости, значит такие p нам не подходят.
3) При p>0 левая часть задает параболу, ветви которой направлены вверх, поэтому неравенство будет выполняться при любом х в случае, когда эта парабола не пересекает ось Ох, т.е. левая часть не имеет корней или, что то же самое,. ее дискриминант отрицателен:
D=(2p-3)²-4p(p+3)=4p²-12p+9-4p²-12p=-24p+9<0,
откуда p>9/24=3/8.
ответ: p∈(3/8;+∞).
2.
x≠3. область определения данной функции (-∞;3)(3;∞)
4.
x≠±1/3. область определения данной функции (-∞;-1/3)(-1/3;1/3)(1/3;∞)
5. Подкоренное выражение больше или равна 0, область определения данной функции (-∞;-4] [4;∞).