В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
котя382
котя382
27.05.2022 09:48 •  Алгебра

Найдите значение выражения (-х3)5 *х8 деленное чертой на х21 при х 1/3
-5/9х2у3z,при х2;у=-3;z=5

Показать ответ
Ответ:
Самолеееет555
Самолеееет555
11.12.2020 16:41
F(x)=-x³+3x²-4.
1. Область определения функции: x∈R (функция определена на x∈(-∞;+∞).
2. Четность/нечетность: f(-x)=-(-x)³+3(-x)²-4=x³+3x²-4≠f(x)≠-f(x) - функция ни четная, ни нечетная.
3. Непрерывность: функция непрерывна на всей области определения.
4. Поведение функции при x→+-∞: при x→-∞, f(x)→+∞; при x→+∞, f(x)→-∞.
5. Производная функции: f'(x)=(-x³+3x²-4)'=-(x³)'+3*(x²)'-4'=-3x²+3*2x-0=-3x²+6x.
6. Экстремумы функции: f'(x)=0, -3x²+6x=0 ⇒ x²-2x=0 ⇒ x(x-2)=0 ⇒ x=0 и x=2.
7. Монотонность (промежутки возрастания и убывания) функции: при x∈(-∞;0], f'(x)<0 - функция убывает, при x∈[0;2], f'(x)>0 - функция возрастает, при x∈[2;+∞), f'(x)<0 - функция убывает. Следовательно x=0 - точка минимума, x=2 - точка максимума.
8. Пересечение графика функции с осями координат: с осью абсцисс, f(x)=0 ⇒ -x³+3x²-4=0 ⇒ x=-1 и x=2, получим точки (-1;0) и (2;0); с осью ординат, x=0, f(x)=-4, получим точку (0;-4).
9. Строим график (см. в приложении)
Исследуйте функцию f(x)=-x^3+3x^2-4 и постройки её график
0,0(0 оценок)
Ответ:
lizabatyshkina
lizabatyshkina
08.07.2020 21:09
Добро пожаловать в урок по математике! Сегодня мы будем решать уравнение для поиска кривой, проходящей через точку m(1; 0), учитывая условия о перпендикуляре к касательной и прохождении через начало координат.

Для начала, давайте представим, что у нас есть уравнение кривой в общем виде, которое выглядит следующим образом: y = f(x). Чтобы найти это уравнение и получить ответ на наш вопрос, нам нужно последовательно выполнить несколько шагов.

Шаг 1: Найдем производную f'(x) от уравнения y = f(x). Поскольку мы ищем кривую, проходящую через точку m(1; 0), и известно, что перпендикуляр к касательной к этой кривой, проведенный через точку касания, проходит через начало координат, то мы знаем, что кривая должна проходить через точку (0; 0). Подставим эти координаты в уравнение y = f(x), чтобы найти f(0).

Подставив (0; 0), получаем: 0 = f(0).

Шаг 2: Теперь мы знаем, что значение функции в точке x = 0 равно нулю. Поскольку мы хотим найти уравнение кривой, то нам нужно найти это значение f(0), чтобы продолжить наше решение.

Шаг 3: Давайте назовем значение f(0) как a и запишем уравнение кривой как y = f(x) = ax + b. Обратите внимание, что коэффициент b обозначает смещение кривой в вертикальном направлении.

Шаг 4: Теперь мы знаем, что кривая проходит через точку m(1; 0). Подставим эти координаты в уравнение кривой, чтобы найти значение b.

Подставив (1; 0), получаем: 0 = a(1) + b.

Шаг 5: Запишем уравнение из шага 4 в виде b = -a и подставим его в уравнение из шага 3 y = ax + b.

Теперь у нас есть уравнение кривой: y = ax - a.

Таким образом, кривая, проходящая через точку m(1; 0) при условии, что перпендикуляр к любой касательной к этой кривой, проведенный через точку касания, проходит через начало координат, будет иметь уравнение y = ax - a.

Давайте попробуем это проверить на практике. Пусть a = 2, тогда у нас получится уравнение y = 2x - 2.

Теперь мы можем проверить, удовлетворяет ли эта кривая условиям задачи. Найдем касательную в точке (1; 0), проходящую через начало координат. Для этого найдем производную от уравнения y = 2x - 2, получим f'(x) = 2. Теперь найдем значение касательной в точке (1; 0): f'(1) = 2.

Мы знаем, что перпендикуляр к касательной должен проходить через начало координат (0; 0). Подставим координаты в уравнение перпендикуляра y = -1/2x, получим: 0 = -1/2(0).

Таким образом, мы видим, что условия задачи выполнены, и уравнение кривой y = 2x - 2 действительно проходит через точку m(1; 0), так как перпендикуляр к любой касательной, проведенный через точку касания, проходит через начало координат.

Я надеюсь, что этот ответ понятен и помог вам разобраться в задаче. Если у вас возникнут еще вопросы, не стесняйтесь задавать их!
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота