Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид у = f'(x0)(x - x0) + f(x0). Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1 f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x. Здесь ^ - знак возведения в степень, * - знак умножения. Найдем значение производной f'(x) в точке х = х0 = 1 f'(x0) = f'(1) = 3*1^2 - 20*1 = -17. Найдем значение функции f(x) в точке х = х0 = 1 f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8. Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1) y = -17(x - 1) - 8, y = -17x + 9. ответ: у = -17х + 9.
1. < var > x^3y^34z^22y=8x^3y^4x^2 < /var ><var>x3y34z22y=8x3y4x2</var>
2. < var > -2x^60,5x^2y^3=-x^8y^3 < /var ><var>−2x60,5x2y3=−x8y3</var>
3. < var > (-5z^2y^3)^3=-125z^6y^9 < /var ><var>(−5z2y3)3=−125z6y9</var>
4. < var > -0,03ab^3=-0,03*(-4)*(-2)^3=0.96 < /var ><var>−0,03ab3=−0,03∗(−4)∗(−2)3=0.96</var>
5. < var > (18a^3b^2c)(\frac{1}{6}ab^3c^2)(-\frac{1}{3}a^2bc^3)=-a^6b^6c^6 < /var ><var>(18a3b2c)(61ab3c2)(−31a2bc3)=−a6b6c6</var>
Объяснение:
Рад
Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид
у = f'(x0)(x - x0) + f(x0).
Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1
f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x.
Здесь ^ - знак возведения в степень, * - знак умножения.
Найдем значение производной f'(x) в точке х = х0 = 1
f'(x0) = f'(1) = 3*1^2 - 20*1 = -17.
Найдем значение функции f(x) в точке х = х0 = 1
f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8.
Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1)
y = -17(x - 1) - 8, y = -17x + 9.
ответ: у = -17х + 9.