1.
6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x
5sin^2x-3sinx*cosx-2cos^2x=0 /:cos^2x≠0
5tg^2x-3tgx-2=0
замена tgx=t
5t^2-3t-2=0
t=1
t=-2/5
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-2/5
x=-arctg(2/5)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(2/5)+pik, k∈Z
2.
5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x
2sin^2x+3sinx*cosx-5cos^2x=0 /:cos^2x≠0
2tg^2x+3tgx-5=0
2t^2+3t-5=0
t=-5/2
2) tgx=-5/2
x=-arctg(5/2)+pik, k∈Z
-arctg(5/2)+pik, k∈Z
1,3^(5x-1) -1,3^(5x-3) > 0 ,69 ⇔ 1,3^(5x-3) *(1,3² -1) > 0 ,69 ⇔
1,3^(5x-3) *(1,69 -1) > 0 ,69 ⇔1,3^(5x-3) *0,69 > 0 ,69 ⇔1,3^(5x-3) > 1⇔
1,3^(5x-3) > 1,3⁰ ⇔ 5x-3 >0 ⇔x > 3 / 5 . || т.к. 1,3 >1 ||
наименьшее целое решение неравенств будет 1.
ответ : 1.
3.
0,6 ^ x > 3 ^x ;⇔ (3/0,6) ^x < 1 ⇔5^x < 5⁰⇒ x <0
наибольшее целое решение неравенства будет -1 .
ответ : -1.
4.
0,5^x ≤ 4^x ⇔ 1 ≤ (4 /0,5) ^x ⇔8^x ≥8 ⁰⇒ x ≥ 0.
ответ : x∈ [ 0 ; ∞).
5.
7,1^ ((x²+3) /(x-5) ) ≥1⇔ 7,1^ ((x²+3) /(x-5) ) ≥7,1⁰ ⇔ (x²+3) /(x-5 ) ≥ 0 ⇒
x >0 .
ответ : x∈ ( 0 ; ∞).
1.
6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x
5sin^2x-3sinx*cosx-2cos^2x=0 /:cos^2x≠0
5tg^2x-3tgx-2=0
замена tgx=t
5t^2-3t-2=0
t=1
t=-2/5
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-2/5
x=-arctg(2/5)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(2/5)+pik, k∈Z
2.
5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x
2sin^2x+3sinx*cosx-5cos^2x=0 /:cos^2x≠0
2tg^2x+3tgx-5=0
замена tgx=t
2t^2+3t-5=0
t=1
t=-5/2
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-5/2
x=-arctg(5/2)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(5/2)+pik, k∈Z