Находим производные: f'(x)=3x^2-1, g'(x)=6x-4. Значение производной в точке касания определяет угловой коэффициент касательной в этой точке. Поскольку касательные параллельны, то производные можно приравнять (у касательных равны угловые коэффициенты), поэтому 3x^2-1=6x-4<=>3x^2-6x+3=0<=>x^2-2x+1=0=> =>x1=1,x2=1. f(1)=1^3-1-1=-1, g(1)=3*1^2-4*1+1=0. f'(1)=2, g'(1)=2. Составляем уравнения касательных: f(x)=>y+1=2(x-1), y=2x-3, g(x)=>y-0=2(x-1), y=2x-2. Ну, и для наглядности графики
Пусть х км/час - скорость течения реки. Тогда скорость лодки по течению составляет 13,5+х км/ч, а против течения реки 13,5-х км/ч. За 8 часов лодка проходит по течению расстояние: S(расстояние)=v(скорость)*t (время)=(13,5+х)*8 км, а против течения лодка проплывает (13,5-х)*5 км, что в 2 раза меньше скорости по течению. Составим и решим равенство: (13,5+х)*8=2*(13,5-х)*5 108+8х=10(13,5-х) 108+8х=135-10х 8х+10х=135-108 18х=27 х=27:18=1,5 (км/ч) - скорость течения реки ответ: скорость течения реки составляет 1,5 км/ч
Значение производной в точке касания определяет угловой коэффициент касательной в этой точке. Поскольку касательные параллельны, то производные можно приравнять (у касательных равны угловые коэффициенты), поэтому 3x^2-1=6x-4<=>3x^2-6x+3=0<=>x^2-2x+1=0=>
=>x1=1,x2=1. f(1)=1^3-1-1=-1, g(1)=3*1^2-4*1+1=0. f'(1)=2, g'(1)=2.
Составляем уравнения касательных: f(x)=>y+1=2(x-1), y=2x-3,
g(x)=>y-0=2(x-1), y=2x-2. Ну, и для наглядности графики
За 8 часов лодка проходит по течению расстояние: S(расстояние)=v(скорость)*t (время)=(13,5+х)*8 км, а против течения лодка проплывает (13,5-х)*5 км, что в 2 раза меньше скорости по течению.
Составим и решим равенство:
(13,5+х)*8=2*(13,5-х)*5
108+8х=10(13,5-х)
108+8х=135-10х
8х+10х=135-108
18х=27
х=27:18=1,5 (км/ч) - скорость течения реки
ответ: скорость течения реки составляет 1,5 км/ч