Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
( x - 1)^2 - 4 = 4 - ( 1 - x)^2 или ( x - 1)^2 - 4 = - (4 -(1 - x)^2)
x^2 - 2x + 1 - 4 = 4 -(1 - 2x+x^2) x^2-2x+1-4= -(4 -(1-2x+x^2)
x^2 - 2x - 3 - 3 - 2x + x^2=0 x^2-2x-3=- (3+2x-x^2)
2x^2 - 4x - 6 = 0 x^2 - 2x-3= - 3 - 2x + x^2
x^2 - 2x - 3= 0 x^2 - x^2 - 2x+ 2x = - 3+3
D = b^2 - 4ac = 4+12=16 0x = 0 - имеет бесконечное множество
x1 = (2 + 4)/2 = 3 решений
x2 = ( 2 - 4)/ 2 = - 1
х+у=75 литров молока.
Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х
Составим и решим систему уравнений:
х+у=75
у+2=1,2х
Выразим значение у в первом уравнении:
у=75-х
Подставим его во второе уравнение (метод подстановки):
у+2=1,2х
75-х+2=1,2х
77-х-1,2х=0
-2,2х=-77
2,2х=77
х=77:2,2
х=35 (литров молока) - в первом бидоне
Тогда во втором у=75-х=75-35=40 литров.
ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
(проверим: 35-35*1/5=35-7=28 литров
40+2=42 литра
28*1,5=42 литра)