В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ammmisha2006
ammmisha2006
04.10.2022 20:15 •  Алгебра

Найдите значения а, при которых данное уравнение имеет корни (а - 3)x^2 - 2(3а - 4)x +7а - 6=0

Показать ответ
Ответ:
ychenicaa7
ychenicaa7
02.10.2020 00:30
Чтобы квадратное уравнение имело корни, необходимо, чтобы дискриминант был больше нуля( 2 корня) или равен нулю ( 1 корень).
(a - 3)*x^2 - 2(3a - 4)*x + 7a - 6 = 0;
Слегка преобразуем уравнение:
(a-3)*x^2 + (8-6a)*x + (7a - 6) =0;
Тогда коэффициенты для нахождения дискриминанта будут такие:
a  = a - 3;   b = 8 - 6a ;   c = 7a - 6;
 D = b^2 - 4ac = (8-6a)^2 - 4*(a-3)(7a - 6)=
=64 - 96a + 36 a^2 - 4(7a^2 - 21a - 6a + 18) =
= 36a^2 - 96 a + 64 - 28a^2 + 108 a - 72 = 
=8a^ + 12 a - 8 .
D ≥ 0;  следовательно   8a^2 + 12a - 8 ≥ 0; сократим на 2 и получим:
4a^2 + 6a - 4 ≥ 0;
D = 36 + 64 = 100= 10^2;
a1 = (-6 + 10) /8 = 1/2;
a2 = (-6-10)/ 8 = - 2. Разложим выражение на множители:
4(a - 1/2)(a +2) ≥ 0;Используем метод интервалов ( точки закрашены, так как в условии не сказано, что 2 корня, а просто, что есть корни., то есть может 2 , а может и 1 корень)

                 +                  -                           +
(-2)(1/2) a
a ∈ ( - бесконечность; -2] U [1/2; + бесконечность)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота