3. У трикутнику АВС сторону АВ точками M і N поділили на три рівні частини. Знайти вектор CM , якщо CA a і CB b . Відповідь: CM 2a b . 3 4. Чотирикутник ABCD – паралелограм, О – точка перетину його діагоналей, М – довільна точка, відмінна від О. Виразити вектор a MA MB MC MD через вектор MO . Відповідь: a 4MO . 5. У рівнобічній трапеції ABCD відомо: нижня основа AB a , бічна сторона AD b і кут між ними A . Розкласти за векторами a і b вектори BC , 3 CD , AC і BD , що утворюють решту сторін і діагоналі трапеції. Відповідь: BC b a b ; CD b a a ; AC a b a b ; aaa BD b a . 6. У трикутнику АВС проведено медіани AD, BE і CF. Довести, що AD BE CF 0 . 7. Дано ромб ABCD. Чи будуть рівними вектори: 1) AD і DC ; 2) AD і BC ; 3) AB і CD ? Відповідь: 1) ні; 2) так; 3) ні.
1)выражение под корнем должно быть больше или равно нулю(x - 3)(8 - 2x) ≥ 0(x - 3)(x - 4) = 0⇒ x ∈ [3;4]2) (14x + 7)(4 - 10x) ≥ 0⇒ x ∈ [-1/2;2/10] 3) (0.1x + 1)(6 - 2x) ≥ 0(x + 10)(3 - x) ≤ 0⇒ x ∈ [-10;3]4) (8 - 16x)(x - 9)x ≥ 0 (x - 0.5)(x - 9)x ≤ 0⇒ x ∈ (-∞;0]∪[1/2;9] (∪ - знак объединения)5) выражение под корнем в знаменателе должно быть больше или равно нулю, а также сам знаменатель не должен быть равен нулю(x - 4)(x - 1)(x - 3)x > 0 ⇒ x ∈ (-∞;0) ∨ (1;3) ∨ (4;+∞)6) (x + 1)(x - 5)(x + 3)x > 0 ⇒ x ∈ (-∞;-3)∪(-1;0)∪(5;+∞)Если естественная область определения - это те значения переменной, при которых выражение имеет смысл.
Відповідь: CM 2a b . 3
4. Чотирикутник ABCD – паралелограм, О – точка перетину його діагоналей, М – довільна точка, відмінна від О. Виразити вектор a MA MB MC MD
через вектор MO .
Відповідь: a 4MO .
5. У рівнобічній трапеції ABCD відомо: нижня основа AB a , бічна сторона
AD b і кут між ними A . Розкласти за векторами a і b вектори BC , 3
CD , AC і BD , що утворюють решту сторін і діагоналі трапеції.
Відповідь: BC b a b ; CD b a a ; AC a b a b ;
aaa
BD b a .
6. У трикутнику АВС проведено медіани AD, BE і CF. Довести, що
AD BE CF 0 .
7. Дано ромб ABCD. Чи будуть рівними вектори: 1) AD і DC ; 2) AD і BC ;
3) AB і CD ?
Відповідь: 1) ні; 2) так; 3) ні.
(14x + 7)(4 - 10x) ≥ 0⇒ x ∈ [-1/2;2/10]
3)
(0.1x + 1)(6 - 2x) ≥ 0(x + 10)(3 - x) ≤ 0⇒ x ∈ [-10;3]4)
(8 - 16x)(x - 9)x ≥ 0
(x - 0.5)(x - 9)x ≤ 0⇒ x ∈ (-∞;0]∪[1/2;9] (∪ - знак объединения)5)
выражение под корнем в знаменателе должно быть больше или равно нулю, а также сам знаменатель не должен быть равен нулю(x - 4)(x - 1)(x - 3)x > 0
⇒ x ∈ (-∞;0) ∨ (1;3) ∨ (4;+∞)6)
(x + 1)(x - 5)(x + 3)x > 0
⇒ x ∈ (-∞;-3)∪(-1;0)∪(5;+∞)Если естественная область определения - это те значения переменной, при которых выражение имеет смысл.