Недопечатали, видимо) "...в которых касательная к графику..." у = х³ + 5х²; у' = 3х² + 10х Пусть касательная проведена в точке х0. Запишем уравнение касательной в этой точке: у = у'(х0) × (х - х0) + у(0). Угловой коэффициент этой касательной равен у'(х0) и, по условию, равен -6 (касательная и прямая у = -6х + 27 параллельны ⇔ равны угловые коэффициенты). Имеем уравнение: у'(х0) = -6; 3(х0)² + 10(х0) = -6; 3(х0)² + 10(х0) + 6 = 0; Нет надобности решать это уравнение, пусть даже и квадратное. По условию, необходимо найти произведение абсцисс. По теореме Виета, произведение корней уравнения равно отношению свободного члена и старшего коэффициента. В данном случае, произведение равно 6/3 = 2. ответ: 2.
{4а + 6b = 9
{3a - 5b = 2
- - - - - - - - - -
Сложим оба уравнения системы
7а + b = 11 ⇒ b = (11 - 7a)
Подставим значение b в любое уравнение системы
4а + 6 · (11 - 7а) = 9 или 3а - 5 · (11 - 7а) = 2
4а + 66 - 42а = 9 3а - 55 + 35а = 2
4а - 42а = 9 - 66 3а + 35а = 2 + 55
-38а = -57 38а = 57
а = -57 : (-38) а = 57 : 38
а = 1,5 а = 1,5
Теперь подставим значение а в любое уравнение системы
4 · 1,5 + 6b = 9 или 3 · 1,5 - 5b = 2
6 + 6b = 9 4,5 - 5b = 2
6b = 9 - 6 5b = 4,5 - 2
6b = 3 5b = 2,5
b = 3 : 6 b = 2,5 : 5
b = 0,5 b = 0,5
ответ: (1,5; 0,5).
у = х³ + 5х²;
у' = 3х² + 10х
Пусть касательная проведена в точке х0. Запишем уравнение касательной в этой точке:
у = у'(х0) × (х - х0) + у(0).
Угловой коэффициент этой касательной равен у'(х0) и, по условию, равен -6 (касательная и прямая у = -6х + 27 параллельны ⇔ равны угловые коэффициенты).
Имеем уравнение:
у'(х0) = -6;
3(х0)² + 10(х0) = -6;
3(х0)² + 10(х0) + 6 = 0;
Нет надобности решать это уравнение, пусть даже и квадратное. По условию, необходимо найти произведение абсцисс. По теореме Виета, произведение корней уравнения равно отношению свободного члена и старшего коэффициента. В данном случае, произведение равно 6/3 = 2.
ответ: 2.