п/2 < t < п - вторая четверть, косинус и котангенс - отрицательные, а синус - положителен.
Рассмотрим с прямоугольного треугольника. Определение. Тангенс - отношение противолежащего катета к прилежащему - противолежащий катет - прилежащий катет По т. Пифагора - гипотенуза
Определение. Косинус - отношение прилежащего катета к гипотенузе
Определение. Котангенс - отношение прилежащего катета к противолежащему катету
Определение. Синус - отношение противолежащего катета к гипотенузе
а)Нам требуется составить сначала по-отдельности каждое уравнение, а затем каким-то образом скомбинировать их. Проще всего составить уравнение окружности. Его общий вид:
(x - x₀)² + (y - y₀)² = R², где (x₀;y₀) - координаты центра, R - радиус окружности. Теперь подставим всё в данное уравнение:
(x + 1)² + (y - 1)² = 144
Предлагаю перенести всё влево(хачем, будет ясно позднее):
(x + 1)² + (y - 1)² - 144 = 0
По условию, две прямые у нас касаются данной окружности и перпендикулярны оси y. Из последнего вытекает, что общее уравнение каждой прямой будет:
y = b. Осталось найти b.
Поскольку каждая прямая касается окружности, то она проходит непосредственно через конец радиуса. Нетрудно определить координаты этого конца. Это (-1;12+1), то есть (-1;13), а также (-1;11). Теперь можем составить уравнения каждой прямой:
y = 13, y - 13 = 0
y = 11, y - 11 = 0
Теперь скомбинируем ихю Для чего я перенёс всё влево в каждом уравнении? П(отому что мы получим произведениеЮ которое равно 0, значит оно задаёт комбинацию некоторых прямых. Итак, искомое уравнение:
Решение:
п/2 < t < п - вторая четверть, косинус и котангенс - отрицательные, а синус - положителен.
Рассмотрим с прямоугольного треугольника.
Определение. Тангенс - отношение противолежащего катета к прилежащему
- противолежащий катет
- прилежащий катет
По т. Пифагора - гипотенуза
Определение. Косинус - отношение прилежащего катета к гипотенузе
Определение. Котангенс - отношение прилежащего катета к противолежащему катету
Определение. Синус - отношение противолежащего катета к гипотенузе
а)Нам требуется составить сначала по-отдельности каждое уравнение, а затем каким-то образом скомбинировать их. Проще всего составить уравнение окружности. Его общий вид:
(x - x₀)² + (y - y₀)² = R², где (x₀;y₀) - координаты центра, R - радиус окружности. Теперь подставим всё в данное уравнение:
(x + 1)² + (y - 1)² = 144
Предлагаю перенести всё влево(хачем, будет ясно позднее):
(x + 1)² + (y - 1)² - 144 = 0
По условию, две прямые у нас касаются данной окружности и перпендикулярны оси y. Из последнего вытекает, что общее уравнение каждой прямой будет:
y = b. Осталось найти b.
Поскольку каждая прямая касается окружности, то она проходит непосредственно через конец радиуса. Нетрудно определить координаты этого конца. Это (-1;12+1), то есть (-1;13), а также (-1;11). Теперь можем составить уравнения каждой прямой:
y = 13, y - 13 = 0
y = 11, y - 11 = 0
Теперь скомбинируем ихю Для чего я перенёс всё влево в каждом уравнении? П(отому что мы получим произведениеЮ которое равно 0, значит оно задаёт комбинацию некоторых прямых. Итак, искомое уравнение:
((x + 1)² + (y - 1)² - 144)(y-13)(y-11) = 0