Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
Для решения задач на движение существует готовая формула s = v * t - формула пути s - расстояние 1 м 25 см = 125 см v - скорость 54 см/ч t - время ? t = 125 cм : 54 см/ч = 2 целых 17/54 часа = 2 ч 18,(8) мин ответ: за 2 часа и примерно 19 минут.
Но уж если в условии задачи дали размеры гусеницы, попробуем использовать и эту величину. (начало пути) < 125 см > + 1 cм = 126 см (конец пути) t = 126 см : 54 см/ч = 126/54 = 2 18/54 = 2 1/3 часа - за это время гусеница преодолеет расстояние 125 см (вынесет свой хвост за отметку 125 см) 2 1/3 часа = 2 ч + (60 : 3) мин = 2 ч 20 мин. ответ: за 2 ч 20 мин.
Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
s = v * t - формула пути
s - расстояние 1 м 25 см = 125 см
v - скорость 54 см/ч
t - время ?
t = 125 cм : 54 см/ч = 2 целых 17/54 часа = 2 ч 18,(8) мин
ответ: за 2 часа и примерно 19 минут.
Но уж если в условии задачи дали размеры гусеницы, попробуем использовать и эту величину.
(начало пути) < 125 см > + 1 cм = 126 см (конец пути)
t = 126 см : 54 см/ч = 126/54 = 2 18/54 = 2 1/3 часа - за это время гусеница преодолеет расстояние 125 см (вынесет свой хвост за отметку 125 см)
2 1/3 часа = 2 ч + (60 : 3) мин = 2 ч 20 мин.
ответ: за 2 ч 20 мин.