Пусть x- количество лет старшего брата и он старше младшего брата на y лет . Тогда младшему брату (x-y) лет
Когда старшему брату было (x-y) лет, то младшему было (x-y)-y=x-2y лет
Из условия задачи имеем уравнение
x-y=3*(x-2y)
Когда младшему брату будет x лет, старшему будет x+y лет
Составляем второе уравнение
x+(x+y)=60
Имеем систему
x-y=3x-6y
2x+y=60
2x-5y=0
Из второго уравнения вычтем первое
6y=60
y=10 - разность в годах
2x+y=60 2x=60-y=50 x=25
То есть старшему брату 25 лет, а младшему 25-10=15 лет
Пусть x- количество лет старшего брата и он старше младшего брата на y лет . Тогда младшему брату (x-y) лет
Когда старшему брату было (x-y) лет, то младшему было (x-y)-y=x-2y лет
Из условия задачи имеем уравнение
x-y=3*(x-2y)
Когда младшему брату будет x лет, старшему будет x+y лет
Составляем второе уравнение
x+(x+y)=60
Имеем систему
x-y=3x-6y
2x+y=60
2x-5y=0
2x+y=60
Из второго уравнения вычтем первое
6y=60
y=10 - разность в годах
2x+y=60 2x=60-y=50 x=25
То есть старшему брату 25 лет, а младшему 25-10=15 лет
2. Замена √x=t≥0; √2t^2-t-2=0 - два корня, но один из них отрицательный.
Поэтому и первоначальное уравнение имеет только один корень
3. 2sin xcos x-cos x=0; cos x(2sin x-1)=0; cos x=0 (⇒ x=π/2 или 3π/2)
или sin x=1/2 (⇒ x=π/6 или x=5π/6). Сумма корней равна 3π
4. lg x=t; t^2-2t-9=0; по теореме Виета
t_1+t_2=2⇒x_1·x_2=10^(t_1)·10^(t_2)=10^(t_1+t_2)=10^2=100
5. Условие отображено некорректно.
Замечание. При использовании теоремы Виета необходимо отдельно продумывать существование корней.