В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Kisaaaa111
Kisaaaa111
24.09.2022 02:25 •  Алгебра

Найти число решений уравнения 2cos^2 x-5sinx=4 на отрезке [0; 5п/2] , и если можно, разъясните поподробнее решение таких уравнений

Показать ответ
Ответ:
sashadothenco
sashadothenco
01.10.2020 21:30
 2cos^2x - 5sinx = 4 
 2*( 1 - sin^2x) - 5sinx - 4  = 0 
2 - 2sin^2x - 5sinx - 4 = 0 
-  2sin^2x - 5sinx - 2 = 0    /:(-1)
2sin^2x + 5sinx + 2 = 0 

Пусть sinx = t, t ∈ [ - 1; 1] 
Имеем: 
2t^2 + 5t + 2 = 0 
Решим кв. уравнение
D= 25 - 4*4 = 25 - 16 = 9 =  3^2
t₁ = ( - 5 +3)/4 = - 1/2
t₂ = ( - 5 - 3)/4 = - 2 ==> не удовлетворяет условию 

Произведём обратную замену, получим
sinx = - 1/2
x = - pi/6 + 2pik
x = 7pi/6 + 2pik

+ ОТБОР НА ОКРУЖНОСТИ
========================

Найти число решений уравнения 2cos^2 x-5sinx=4 на отрезке [0; 5п/2] , и если можно, разъясните попод
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота