Докажите признак параллелограмма по двум противоположным сторонам, которые равны и параллельны.
Доказательство
Дано: четырёхугольник АВСD; сторона ВС равна и параллельна стороне АD.
Доказать, что АВСD - параллелограмм.
Для доказательства проведем диагональ AC, в результате чего четырёхугольник АВСD разобьется на два треугольника - Δ ABC и ΔACD.
Сторона ВС треугольника АВС равна стороне АD треугольника AСD - согласно условию.
Сторона АС треугольника АВС равна стороне АС треугольника ACD - согласно построению: проведённая диагональ является общей стороной данных треугольников.
∠ВСА треугольника АВС равен ∠САD треугольника ACD - как углы внутренние накрест лежащие при параллельных прямых ВС║AD и секущей АС.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (первый признак равенства треугольников).
Из равенства треугольников ABC и АCD следует, что сторона АВ = CD.
АВ также параллельна СD, так как ∠ВАС треугольника АВС равен ∠АСD треугольника ACD; а так как эти углы являются внутренними накрест лежащими при прямых АВ и СD и секущей АС, то это означает, что АВ ║СD.
Таким образом, в четырёхугольнике АВСD обе пары противоположных сторон равны и параллельны друг другу, следовательно, четырёхугольник АВСD является параллелограммом.
Таким образом, мы доказали, что: если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник – параллелограмм (второй признак параллелограмма).
См. Объяснение
Объяснение:
Задание
Докажите признак параллелограмма по двум противоположным сторонам, которые равны и параллельны.
Доказательство
Дано: четырёхугольник АВСD; сторона ВС равна и параллельна стороне АD.
Доказать, что АВСD - параллелограмм.
Для доказательства проведем диагональ AC, в результате чего четырёхугольник АВСD разобьется на два треугольника - Δ ABC и ΔACD.
Сторона ВС треугольника АВС равна стороне АD треугольника AСD - согласно условию.
Сторона АС треугольника АВС равна стороне АС треугольника ACD - согласно построению: проведённая диагональ является общей стороной данных треугольников.
∠ВСА треугольника АВС равен ∠САD треугольника ACD - как углы внутренние накрест лежащие при параллельных прямых ВС║AD и секущей АС.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (первый признак равенства треугольников).
Из равенства треугольников ABC и АCD следует, что сторона АВ = CD.
АВ также параллельна СD, так как ∠ВАС треугольника АВС равен ∠АСD треугольника ACD; а так как эти углы являются внутренними накрест лежащими при прямых АВ и СD и секущей АС, то это означает, что АВ ║СD.
Таким образом, в четырёхугольнике АВСD обе пары противоположных сторон равны и параллельны друг другу, следовательно, четырёхугольник АВСD является параллелограммом.
Таким образом, мы доказали, что: если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник – параллелограмм (второй признак параллелограмма).
б) |5 - 4a| = 5 - 4a ===> 5 - 4a >= 0, 4a <= 5, a <= 5/4 =
= 1.25
в) |18 - 9a| / (18 - 9a) = 1 ===> 18 - 9a > 0, 9a < 18
a < 18/9 = 2
г) |10a - 45| / 10a - 45 = -1 ===> 10a - 45 < 0 10a > 45
a > 45 / 10 = 4.5
ответ. а) a > 31/3, б) a <= 1.25, в) a < 2, г) a > 4.5