По определению среднее арифметическое равно общей сумме членов деленное на их общее количество:
откуда сумма n первых членов арифметической последовательности равна
в частности
отсюда второй член последовательности равен
разность арифметической прогрессии равна
значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4 (2, 6, 10, 14, 18, .....) ---------- /////////// маленькая проверочка схождения с формулой суммы членов прогрессии
////////// ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4
Перечислены все случаи пересечения, на выбор.
Объяснение:
№1 пересекает №№2,3,4,5,7,8, параллельна 6 и 9.
№2 пересекает №№1,3,4,5,6,7,8,9.
№3 пересекает №№1,2,4,5,6,7,8,9.
№4 пересекает №№1,2,3,5,6,7,8,9.
№5 пересекает №№1,2,3,4,6,7,8,9.
№6 пересекает №№2,3,4,5,7,8, параллельна 1 и 9.
№7 пересекает №№1,2,3,4,5,6,8,9.
№8 пересекает №№1,2,3,4,5,6,7,9.
№9 пересекает №№2,3,4,5,7,8, параллельна 1 и 6.
Заключение: графики линейных функций, коэффициент k которых (при х) одинаковый, параллельны.
1) y = -2x-1 2 6)y= -2x-3,5 9)y= -2x+5
откуда сумма n первых членов арифметической последовательности равна
в частности
отсюда второй член последовательности равен
разность арифметической прогрессии равна
значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4
(2, 6, 10, 14, 18, .....)
----------
///////////
маленькая проверочка схождения с формулой суммы членов прогрессии
//////////
ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4