1) Для начала подставим границы отрезка, т. е. числа 1 П в функцию: у (0) = 0+sin0 = 0 y(П) = П + sin2П = П+0 = П 2) Теперь найдем производную этой функции: y' = 1+ 2cos2x 3) Найдем точки, в которых производная равна 0 1 + 2cos2x = 0 cos2x = -1/2 2x = + -arccos(-1/2) + 2Пn 2x = + -arccos(1/2) + П +2Пn 2x = + -П/3 +П + 2Пn 2x = + -4П/3 +2Пn х = + -2П/3 +Пn 4) Находим точки, попадающие в отрезок [0,П] (здесь их 2) при n=0 x = 2П/3 и при n=1 х = -2П/3+П = П/3 5)подставляем найденные точки в функцию у (П/3) = П/3 + sin (2П/3) = П/3 + sqrt(3)/2 y(2П/3) = 2П/3 + sin (4П/3) = 2П/3 -sqrt(3)/2 6) из полученных нами значений (0, П, П/3 + sqrt(3)/2 и 2П/3 -sqrt(3)/2) выбираем наименьшее и наибольшее. Очевидно, что У наименьшее = 0 У наибольшее = П
Примечание sqrt - квадратный корень Только если так.
2 завода вместе должны были выпустили 40 т пончиков
1 филиал перевыполнил на 20%, а второй на 30% их общий выпуск равен 50т
Так как, х как 1.2x, а y как 1.3y===>>Составляем уравнение:
x+y=40
1.2x+1.3y=50
-1.2x-1.2y=-48
1.2x+1.3y=50
0.1y=2
y=20
Получается,что 20 это выпустил по плану первый филиал===>>>Вычитаем из сколько должны были,сколько выпустили===>
x=40-20=20 это мы нашли сколько выпустил по плану второй,значит
1 филиал - 0,2х=0,2*20=4 т
А второй-0,3у=0,3*20=6 т
ответ: 4т-1ый
6т-2ой
у (0) = 0+sin0 = 0
y(П) = П + sin2П = П+0 = П
2) Теперь найдем производную этой функции:
y' = 1+ 2cos2x
3) Найдем точки, в которых производная равна 0
1 + 2cos2x = 0
cos2x = -1/2
2x = + -arccos(-1/2) + 2Пn
2x = + -arccos(1/2) + П +2Пn
2x = + -П/3 +П + 2Пn
2x = + -4П/3 +2Пn
х = + -2П/3 +Пn
4) Находим точки, попадающие в отрезок [0,П] (здесь их 2)
при n=0 x = 2П/3
и
при n=1 х = -2П/3+П = П/3
5)подставляем найденные точки в функцию
у (П/3) = П/3 + sin (2П/3) = П/3 + sqrt(3)/2
y(2П/3) = 2П/3 + sin (4П/3) = 2П/3 -sqrt(3)/2
6) из полученных нами значений (0, П, П/3 + sqrt(3)/2 и 2П/3 -sqrt(3)/2) выбираем наименьшее и наибольшее.
Очевидно, что У наименьшее = 0
У наибольшее = П
Примечание sqrt - квадратный корень
Только если так.