2. Упорядочим имеющиеся числа по возрастанию: 3, 4, 4, 7, 15, 15, 16, 24. Между числами этого упорядоченного ряда где-то нужно вставить число х, тогда по определению, медианой ряда будет число, расположенное ровно посередине, т.е. 5-ое по счету число.
Если х<7, то 5-ым числом, т.е. медианой, будет 7, откуда (x+88)/9=7, х=7*9-88=-25<7, т.е. -25 удовлетворяет условию.
Если 7≤х≤15, то медианой будет само х, но тогда (x+88)/9=х, откуда х=11, тоже подходит.
Если х>15, то медиана ряда равна 15, т.е. (x+88)/9=15, откуда х=9*15-88=47.
(1) -2⁷*-2²=-2⁹ (если основания равны(в нашем случае они равны=-2), то при умножении степени складываются)
2) (-х³)²*х⁴ (если у тебя такая ситуация, что число в скобках в степени, а после скобки ещё степень (-х³)² , то степени перемножаются и в нашем случает, это будет -х⁶, но чтобы воспользоваться правилом тем, которое мы использовали в первом выражении(1), нам нужно заметить, что -х⁶ находится в чётной степени, а это значит, что каким бы не был х, выражение -х⁶ будет положительным, значит -х⁶=х⁶, что бы у нас получилось, мы должны в уравнении использовать х⁶, что бы было одинаковое основание, используем:
Пусть пропущенное число равно х.
1. Найдем среднее арифметическое:
(х+3+4+4+7+15+15+16+24)/9=(x+88)/9
2. Упорядочим имеющиеся числа по возрастанию: 3, 4, 4, 7, 15, 15, 16, 24. Между числами этого упорядоченного ряда где-то нужно вставить число х, тогда по определению, медианой ряда будет число, расположенное ровно посередине, т.е. 5-ое по счету число.
Если х<7, то 5-ым числом, т.е. медианой, будет 7, откуда (x+88)/9=7, х=7*9-88=-25<7, т.е. -25 удовлетворяет условию.
Если 7≤х≤15, то медианой будет само х, но тогда (x+88)/9=х, откуда х=11, тоже подходит.
Если х>15, то медиана ряда равна 15, т.е. (x+88)/9=15, откуда х=9*15-88=47.
ответ: подходят три числа: -25; 11; 47.
(1) -2⁷*-2²=-2⁹ (если основания равны(в нашем случае они равны=-2), то при умножении степени складываются)
2) (-х³)²*х⁴ (если у тебя такая ситуация, что число в скобках в степени, а после скобки ещё степень (-х³)² , то степени перемножаются и в нашем случает, это будет -х⁶, но чтобы воспользоваться правилом тем, которое мы использовали в первом выражении(1), нам нужно заметить, что -х⁶ находится в чётной степени, а это значит, что каким бы не был х, выражение -х⁶ будет положительным, значит -х⁶=х⁶, что бы у нас получилось, мы должны в уравнении использовать х⁶, что бы было одинаковое основание, используем:
х⁶*х⁴=х¹⁰