Пусть первое число х, тогда второе число на у больше первого,а третье число больше второго так же на у. 1число-х 2число-х+y 3число-х+2у По условию задачи произведение первого числа на третье,меньше квадрата второго на 49. Составим уравнение: (x+y)^2-x(x+2y)=49 x^2+2xy+y^2-x^2-2xy=49 y^2=49 y1=7 y2= -7 По условию задачи даны натуральные числа,поэтому у2 не удовлетворяет условию задачи. Значит второе число больше первого на 7, а третье число,которое является наибольшим числом на 14 больше первого числа,которое является наименьшим. Т.е. наименьшее число меньше наибольшего на 14.
Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём. Мы помним формулу сокращённого умножения:
Отсюда я могу легко выразить сумму квадратов:
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y. Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его. Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену:
После замены получаем:
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой) - этот корень не удовлетворяет нашему уравнению. Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
Отсюда
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
1число-х
2число-х+y
3число-х+2у
По условию задачи произведение первого числа на третье,меньше квадрата второго на 49. Составим уравнение:
(x+y)^2-x(x+2y)=49
x^2+2xy+y^2-x^2-2xy=49
y^2=49
y1=7
y2= -7
По условию задачи даны натуральные числа,поэтому у2 не удовлетворяет условию задачи. Значит второе число больше первого на 7, а третье число,которое является наибольшим числом на 14 больше первого числа,которое является наименьшим. Т.е. наименьшее число меньше наибольшего на 14.
Далее:
Таким образом, получаем уравнение:
Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём.
Мы помним формулу сокращённого умножения:
Отсюда я могу легко выразить сумму квадратов:
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y.
Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его.
Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену:
После замены получаем:
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой)
- этот корень не удовлетворяет нашему уравнению.
Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
Отсюда
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.