Y=f(x₀)+f'(x₀(x-x₀) - уравнение касательной. По условию касательная параллельна прямой y=-2x+6, значит коэффициент наклона прямой равен -2, а коэффициент наклона касательной есть значение производной в точке касания. Найдём точки, в которых производная функции y=-x²+4 равна -2. Сначала найдём производную y'=(-x²+4)'=-2x Приравняем производную к числу -2 -2x=-2 x₀=1 Найдём уравнение касательной к графику функции y=-x²+4 в точке x₀=1. Найдем значение функции в точке x₀=1. f(1)=-1²+4=3 f'(1)=-2 (по условию) Подставим эти значения в уравнение касательной y=3+(-2)(x-1)=3-2x+2=-2x+5
Пусть первый рабочий изготовлял х дет/ч, тогда второй изготовлял х+12 дет/ч.
Первый работал 5 ч, значит сделал 5х деталей. Второй работал 4 ч, значит сделал 4( х+12) деталей. Т.к. они изготовили по одинаковому количеству деталей, то верно равенство:
5х = 4( х+12) 5х = 4 х+ 48 5х - 4 х = 48 х = 48 (дет/ч изготовлял первый рабочий )
х+12 =48+12 = 60 (дет/ч изготовлял второй рабочий )
ответ: первый рабочий изготовлял 48 дет/ч, второй изготовлял 60 дет/ч
По условию касательная параллельна прямой y=-2x+6, значит коэффициент наклона прямой равен -2, а коэффициент наклона касательной есть значение производной в точке касания. Найдём точки, в которых производная функции y=-x²+4 равна -2. Сначала найдём производную
y'=(-x²+4)'=-2x
Приравняем производную к числу -2
-2x=-2
x₀=1
Найдём уравнение касательной к графику функции y=-x²+4 в точке x₀=1.
Найдем значение функции в точке x₀=1.
f(1)=-1²+4=3
f'(1)=-2 (по условию)
Подставим эти значения в уравнение касательной
y=3+(-2)(x-1)=3-2x+2=-2x+5
Первый работал 5 ч, значит сделал 5х деталей.
Второй работал 4 ч, значит сделал 4( х+12) деталей.
Т.к. они изготовили по одинаковому количеству деталей, то верно равенство:
5х = 4( х+12)
5х = 4 х+ 48
5х - 4 х = 48
х = 48
(дет/ч изготовлял первый рабочий )
х+12 =48+12 = 60 (дет/ч изготовлял второй рабочий )
ответ: первый рабочий изготовлял 48 дет/ч, второй изготовлял 60 дет/ч