- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
sin^2x+2sincosx-3cos^2x=0 | /cos^2x
tg^2x+2tgx-3=0
tgx=y
y^2+2y-3=0
y=1
y=-3
Найдем х :
1)tgx=1
x=pi/4+pik . k=z
2)tgx=-3
x=arctg(-3)+pik . k=z
sinx/2+cosx/2+sinx/2cosx/2=1 |/cosx/2
tgx/2+1+sinx/2=1
tgx/2+sinx/2=0
(sinx/2+sinx/2*cosx/2)/cosx/2=0
одз:
1)sinx/2+sinx/2*cosx/2=0
sinx/2(1+cosx/2)=0
1.sinx/2=0
x/2=pik
x=2pik. k=z
2.cosx/2=-1
x/2=pi/2+pik
x=pi+2pik . k=z
2)cosx/2≠0
x≠pi/2+pik . k=z
ответ:x=pik . k=z
sinxcosx-sin^2x+sinx-cosx=0
sinx(cosx-sinx)-(cosx-sinx)=0
(cosx-sinx)(sinx-1)=0
1)cosx-sinx=0 |/sinx
ctgx=1
x=pi/4+pik . k=z
2)sinx-1=0
sinx=1
x=pi/2+2pik . k=z