В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Егор02121
Егор02121
16.10.2022 18:11 •  Алгебра

Найти корень уравнения cosx+2sinx-1=0 лежащий в интервале [-45,45]

Показать ответ
Ответ:
janeair6994
janeair6994
27.08.2020 07:58

Перепишем уравнение в виде cos(x)=√(1-sin²(x))=1-2*sin(x). Возводя обе части в квадрат, получаем уравнение 1-sin²(x)=1-4*sin(x)+4*sin²(x), или 5*sin²(x)-4*sin(x)=sin(x)*[5*sin(x)-4]=0. Отсюда либо sin(x)=0, либо sin(x)=4/5=0,8. Но уравнению sin(x)=0 в интервале [-45°;45°] отвечает только значение x=0, а уравнение sin(x)=0,8 в этом интервале не имеет решения, так как 0,8>√2/2, а для этого интервала справедливо неравенство -√2/2≤sin(x)≤√2/2. ответ: x=0.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота