Найдите координаты вершины параболы у=x^2-4x+3 и координаты точек пересечения этой параболы с осями координатвершина:х вершина = -b/2a=4/2=2y вершина = 2^2-4*2+3=-1(2;-1) Точки пересеченияx=0, У=3 точка пересечения с осью ординатх=1, у=0 точка пересечения с осью абциссх=3, у=0 точка пересечения с осью абциссКорни уравнения:Находим дискриминант D = b^2-4ac=16-4*3*1=4находим корниx1= -b + корень из D / 2ax2 = -b - корень из D / 2a x1= 4+2/2=3x2=4-2/2=1 теперь находим уу1=3^2-4*3+3=0y2= 1^2-4*3+3=-8(3;0), (1; -8)
1.
216х² - 6у⁴ = 6 * (36х² - у⁴) = 6*(6х - у²)(6х + у²) (ответ Е),
2.
а)
S = 6а² = 6*(3х - 4)² = 6*(9х² - 24х + 16) = 54х² - 144х + 96,
б)
V = а³ = (3х - 4)³ = 27х³ - 108х² + 144х - 16,
3.
а)
4,3² - 2,58 + 0,3² = 4,3² - 2*4,3*0,3 + 0,3² = (4,3 - 0,3)² = 4² = 16,
б)
(44² - 12²) / (56² - 16²) = (44 - 12)(44 + 12) / (56 - 16)(56 + 16) =
= (32*56) / (40*72) = 28/45,
4.
1 число - х,
2 число - (х-52),
х² - (х-52)² = 208,
х² - х² + 104х - 2704 = 208,
104х = 208 + 2704,
104х = 2912,
х = 28 - 1 число,
х-52 = 28 - 52 = -24 - 2 число