Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
Расстояние от центра башни до путника (36+49)=85 (м).
Форма башни - окружность с радиусом 36 м.
Из точки, где находится путник проведём касательную к окружности башни. Точку касания окружности соединяем с центром: получаем прямоугольный треугольник, где расстояние от центра башни до путника - гипотенуза, расстояние от центра башни до точки касания (нахождения арбалетчика=радиус башни) - катет, расстояние от арбалетчика до путника - катет. ⇒
Путник находится от арбалетчика на расстоянии:
√(85²-36²)=√(7225-1296)=√5929=77 (м).
ответ: путник находится от арбалетчика на расстоянии 77 метров.
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность:
Объяснение:
360 дм=36 м 0,049 км=49 м.
Расстояние от центра башни до путника (36+49)=85 (м).
Форма башни - окружность с радиусом 36 м.
Из точки, где находится путник проведём касательную к окружности башни. Точку касания окружности соединяем с центром: получаем прямоугольный треугольник, где расстояние от центра башни до путника - гипотенуза, расстояние от центра башни до точки касания (нахождения арбалетчика=радиус башни) - катет, расстояние от арбалетчика до путника - катет. ⇒
Путник находится от арбалетчика на расстоянии:
√(85²-36²)=√(7225-1296)=√5929=77 (м).
ответ: путник находится от арбалетчика на расстоянии 77 метров.