11 в любой степени кончается на 1. 19 в нечетной степени кончается на 9.
Их сумма кончается на 1+9=10, то есть на 0, а значит, делится на 5.
Осталось доказать, что это число делится на 3.
11=3*3+2; 11^2019 = (3*3+2)^2019 = 2^2019.
Здесь и дальше знак = означает "такой же остаток при делении на 3".
2^2019 = (2^3)^673 = 8^673 = 2^673 = 2^3*2^670 = 8*(2^10)^67 = 2*1024^67 =
= 2*(3*341+1)^67 = 2*1^67 = 2
Таким образом, 11^2019 имеет при делении на 3 остаток 2.
19 = 3*6+1; 19^2019 = (3*6+1)^2019 = 1^2019 = 1.
Таким образом, 19^2019 имеет при делении на 3 остаток 1.
Сумма этих чисел имеет остаток 2+1=3, то есть делится нацело.
Что и требовалось доказать.
11 в любой степени кончается на 1. 19 в нечетной степени кончается на 9.
Их сумма кончается на 1+9=10, то есть на 0, а значит, делится на 5.
Осталось доказать, что это число делится на 3.
11=3*3+2; 11^2019 = (3*3+2)^2019 = 2^2019.
Здесь и дальше знак = означает "такой же остаток при делении на 3".
2^2019 = (2^3)^673 = 8^673 = 2^673 = 2^3*2^670 = 8*(2^10)^67 = 2*1024^67 =
= 2*(3*341+1)^67 = 2*1^67 = 2
Таким образом, 11^2019 имеет при делении на 3 остаток 2.
19 = 3*6+1; 19^2019 = (3*6+1)^2019 = 1^2019 = 1.
Таким образом, 19^2019 имеет при делении на 3 остаток 1.
Сумма этих чисел имеет остаток 2+1=3, то есть делится нацело.
Что и требовалось доказать.
y=f(x); f(-4)=16/(-4+5)=16/1=16; наибольшее
f(1)=1/(1+5)=1/6;
y'=(x^2 /(x+5)'=(2x(x+5)-x^2)/ (x+5)^2=(x^2+10x)/ (x+5)^2;
y'=0; x^2+10x=0; x≠-5
x(x+10)=0; x=0 ili x=-10; -10∉[-4;1]
f(0)=0/(0+5)^2=0 наименьшее
2)y=sin2x -x; [-π/2;π/2]
f(-π/2)=sin(-π) +π/2=-sinπ +π/2=π/2=1,57; наибольшее
f(π/2)=sinπ -π/2=-π/2=-1,57 наименьшее
y'=(sin2x -x)'=2cos2x -1;
y'=0; 2cos2x -1=0; cos2x=1/2; 2x=+-π/3+2πn; x=+-π/6; x∈[/π/2; π/2]!
f(-π/6)=-sinπ/3) +π/6=√3/2 +π/6≈0,85+0,53=1,38;
f(π/6)=sinπ/3-π/6=√3/2 -π/6≠0,85-0,53=0,32